Dynamic Pressure‐Flow Curve Analysis of the Native Heart and Left Ventricular Assist Device for Full and Partial Bypass Conditions

2021 ◽  
Author(s):  
Karen May‐Newman
2019 ◽  
Vol 42 (9) ◽  
pp. 490-499 ◽  
Author(s):  
Roland Graefe ◽  
Andreas Henseler ◽  
Reiner Körfer ◽  
Bart Meyns ◽  
Libera Fresiello

Current left ventricular assist devices are designed to reestablish patient’s hemodynamics at rest but they lack the suitability to sustain the heart adequately during physical exercise. Aim of this work is to assess the performance during exercise of a left ventricular assist device with flatter pump pressure-flow characteristic and increased pressure sensitivity (left ventricular assist device 1) and to compare it to the performance of a left ventricular assist device with a steeper characteristic (left ventricular assist device 2). The two left ventricular assist devices were tested at constant rotational speed with a verified computational cardiorespiratory simulator reproducing an average left ventricular assist device patient response to exercise (EXE↑) and a left ventricular assist device patient with no chronotropic and inotropic response (EXE→). According to the results, left ventricular assist device 1 pumps a higher flow than left ventricular assist device 2 both at EXE↑ (6.3 vs 5.6 L/min) and at EXE→ (6.7 vs 6.1 L/min), thus it better unloads the left ventricle. Left ventricular assist device 1 increases the power delivered to the circulation from 0.63 W at rest to 0.67 W at EXE↑ and 0.82 W at EXE→, while left ventricular assist device 2 power shows even a minimal decrease. Left ventricular assist device 1 better sustains exercise hemodynamics and can provide benefits in terms of exercise performance, especially for patients with a poor residual left ventricular function, for whom the heart can hardly accommodate an increase of cardiac output.


Author(s):  
J P Cassella ◽  
V Salih ◽  
T R Graham

Left ventricular assist systems are being developed for eventual long term or permanent implantation as an alternative to heart transplantation in patients unsuitable for or denied the transplant option. Evaluation of the effects of these devices upon normal physiology is required. A preliminary study was conducted to evaluate the morphology of aortic tissue from calves implanted with a pneumatic Left Ventricular Assist device-LVAD. Two 3 month old heifer calves (calf 1 and calf 2) were electively explanted after 128 days and 47 days respectively. Descending thoracic aortic tissue from both animals was removed immediately post mortem and placed into karnovsky’s fixative. The tissue was subsequently processed for transmission electron microscopy (TEM). Some aortic tissue was fixed in neutral buffered formalin and processed for routine light microscopy.


Sign in / Sign up

Export Citation Format

Share Document