scholarly journals Quantile regression with a change-point model for longitudinal data: An application to the study of cognitive changes in preclinical alzheimer's disease

Biometrics ◽  
2015 ◽  
Vol 71 (3) ◽  
pp. 625-635 ◽  
Author(s):  
Chenxi Li ◽  
N. Maritza Dowling ◽  
Rick Chappell
2020 ◽  
pp. 096228022094809
Author(s):  
Hong Li ◽  
Andreana Benitez ◽  
Brian Neelon

Alzheimer’s disease is the leading cause of dementia among adults aged 65 or above. Alzheimer’s disease is characterized by a change point signaling a sudden and prolonged acceleration in cognitive decline. The timing of this change point is of clinical interest because it can be used to establish optimal treatment regimens and schedules. Here, we present a Bayesian hierarchical change point model with a parameter constraint to characterize the rate and timing of cognitive decline among Alzheimer’s disease patients. We allow each patient to have a unique random intercept, random slope before the change point, random change point time, and random slope after the change point. The difference in slope before and after a change point is constrained to be nonpositive, and its parameter space is partitioned into a null region (representing normal aging) and a rejection region (representing accelerated decline). Using the change point time, the estimated slope difference, and the threshold of the null region, we are able to (1) distinguish normal aging patients from those with accelerated cognitive decline, (2) characterize the rate and timing for patients experiencing cognitive decline, and (3) predict personalized risk of progression to dementia due to Alzheimer’s disease. We apply the approach to data from the Religious Orders Study, a national cohort study of aging Catholic nuns, priests, and lay brothers.


2014 ◽  
Vol 10 ◽  
pp. P429-P430
Author(s):  
Yen Ying Lim ◽  
Victor L. Villemagne ◽  
Robert H. Pietrzak ◽  
Peter J. Snyder ◽  
David Ames ◽  
...  

2008 ◽  
Vol 4 ◽  
pp. T576-T576
Author(s):  
Chengjie Xiong ◽  
Catherine Roe ◽  
J. Philip Miller ◽  
John Morris

2017 ◽  
Vol 13 (4) ◽  
pp. 468-492 ◽  
Author(s):  
Marion Mortamais ◽  
Jessica A. Ash ◽  
John Harrison ◽  
Jeffrey Kaye ◽  
Joel Kramer ◽  
...  

2012 ◽  
Author(s):  
Jennifer A. Eastman ◽  
Kristy S. Hwang ◽  
Sona Babakchanian ◽  
Nicole Chow ◽  
Leslie Ramirez ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soo Hyun Cho ◽  
Sookyoung Woo ◽  
Changsoo Kim ◽  
Hee Jin Kim ◽  
Hyemin Jang ◽  
...  

AbstractTo characterize the course of Alzheimer’s disease (AD) over a longer time interval, we aimed to construct a disease course model for the entire span of the disease using two separate cohorts ranging from preclinical AD to AD dementia. We modelled the progression course of 436 patients with AD continuum and investigated the effects of apolipoprotein E ε4 (APOE ε4) and sex on disease progression. To develop a model of progression from preclinical AD to AD dementia, we estimated Alzheimer’s Disease Assessment Scale-Cognitive Subscale 13 (ADAS-cog 13) scores. When calculated as the median of ADAS-cog 13 scores for each cohort, the estimated time from preclinical AD to MCI due to AD was 7.8 years and preclinical AD to AD dementia was 15.2 years. ADAS-cog 13 scores deteriorated most rapidly in women APOE ε4 carriers and most slowly in men APOE ε4 non-carriers (p < 0.001). Our results suggest that disease progression modelling from preclinical AD to AD dementia may help clinicians to estimate where patients are in the disease course and provide information on variation in the disease course by sex and APOE ε4 status.


2021 ◽  
Vol 79 (1) ◽  
pp. 225-235
Author(s):  
Maya Arvidsson Rådestig ◽  
Johan Skoog ◽  
Henrik Zetterberg ◽  
Jürgen Kern ◽  
Anna Zettergren ◽  
...  

Background: We have previously shown that older adults with preclinical Alzheimer’s disease (AD) pathology in cerebrospinal fluid (CSF) had slightly worse performance in Mini-Mental State Examination (MMSE) than participants without preclinical AD pathology. Objective: We therefore aimed to compare performance on neurocognitive tests in a population-based sample of 70-year-olds with and without CSF AD pathology. Methods: The sample was derived from the population-based Gothenburg H70 Birth Cohort Studies in Sweden. Participants (n = 316, 70 years old) underwent comprehensive cognitive examinations, and CSF Aβ-42, Aβ-40, T-tau, and P-tau concentrations were measured. Participants were classified according to the ATN system, and according to their Clinical Dementia Rating (CDR) score. Cognitive performance was examined in the CSF amyloid, tau, and neurodegeneration (ATN) categories. Results: Among participants with CDR 0 (n = 259), those with amyloid (A+) and/or tau pathology (T+, N+) showed similar performance on most cognitive tests compared to participants with A-T-N-. Participants with A-T-N+ performed worse in memory (Supra span (p = 0.003), object Delayed (p = 0.042) and Immediate recall (p = 0.033)). Among participants with CDR 0.5 (n = 57), those with amyloid pathology (A+) scored worse in category fluency (p = 0.003). Conclusion: Cognitively normal participants with amyloid and/or tau pathology performed similarly to those without any biomarker evidence of preclinical AD in most cognitive domains, with the exception of slightly poorer memory performance in A-T-N+. Our study suggests that preclinical AD biomarkers are altered before cognitive decline.


Sign in / Sign up

Export Citation Format

Share Document