scholarly journals Assessing First‐Order BQART Estimates for Ancient Source‐to‐Sink Mass Budget Calculations

2021 ◽  
Author(s):  
Björn Nyberg ◽  
William Helland‐Hansen ◽  
Robert Gawthorpe ◽  
Fabian Tillmans ◽  
Pål Sandbakken
2019 ◽  
Vol 47 (1) ◽  
pp. 91-118 ◽  
Author(s):  
Scott M. McLennan ◽  
John P. Grotzinger ◽  
Joel A. Hurowitz ◽  
Nicholas J. Tosca

Two decades of intensive research have demonstrated that early Mars ([Formula: see text]2 Gyr) had an active sedimentary cycle, including well-preserved stratigraphic records, understandable within a source-to-sink framework with remarkable fidelity. This early cycle exhibits first-order similarities to (e.g., facies relationships, groundwater diagenesis, recycling) and first-order differences from (e.g., greater aeolian versus subaqueous processes, basaltic versus granitic provenance, absence of plate tectonics) Earth's record. Mars’ sedimentary record preserves evidence for progressive desiccation and oxidation of the surface over time, but simple models for the nature and evolution of paleoenvironments (e.g., acid Mars, early warm and wet versus late cold and dry) have given way to the view that, similar to Earth, different climate regimes on Mars coexisted on regional scales and evolved on variable timescales, and redox chemistry played a pivotal role. A major accomplishment of Mars exploration has been to demonstrate that surface and subsurface sedimentary environments were both habitable and capable of preserving any biological record. ▪ Mars has an ancient sedimentary rock record with many similarities to but also many differences from Earth's sedimentary rock record. ▪ Mars’ ancient sedimentary cycle shows a general evolution toward more desiccated and oxidized surficial conditions. ▪ Climatic regimes of early Mars were relatively clement but with regional variations leading to different sedimentary mineral assemblages. ▪ Surface and subsurface sedimentary environments on early Mars were habitable and capable of preserving any biological record that may have existed.


Geology ◽  
2020 ◽  
Vol 48 (10) ◽  
pp. 992-996 ◽  
Author(s):  
Neal C. Auchter ◽  
Brian W. Romans ◽  
Stephen M. Hubbard ◽  
Benjamin G. Daniels ◽  
Howie D. Scher ◽  
...  

Abstract Temporary storage of sediment between source and sink can hinder reconstruction of climate and/or tectonic signals from stratigraphy by mixing of sediment tracers with diagnostic geochemical or geochronological signatures. Constraining the occurrence and timing of intrabasinal sediment recycling has been challenging because widely used detrital geo-thermochronology applications do not record shallow burial and subsequent reworking. Here, we apply strontium isotope stratigraphy techniques to recycled marine shell material in slope deposits of the Upper Cretaceous Tres Pasos Formation, Magallanes Basin, Chile. Detrital 87Sr/86Sr ages from 94 samples show that the majority (>85%) of the shells are >1–12 m.y. older than independently constrained depositional ages. We interpret the gap between mineralization age (87Sr/86Sr age) and depositional age of host strata to represent the intrabasinal residence time of sediment storage at the million-year time scale. We also use specimen type to infer relative position of intrabasinal source material along the depositional profile, where oysters represent shallow-water (i.e., proximal) sources and inoceramids represent deeper-water (i.e., distal) sources. The combined use of detrital strontium isotope ages and specimen types from linked depositional segments provides an opportunity to identify and quantify sediment storage and recycling in ancient source-to-sink systems.


2018 ◽  
Vol 373 ◽  
pp. 111-133 ◽  
Author(s):  
Björn Nyberg ◽  
William Helland-Hansen ◽  
Rob L. Gawthorpe ◽  
Pål Sandbakken ◽  
Christian Haug Eide ◽  
...  
Keyword(s):  

2019 ◽  
Vol 42 ◽  
Author(s):  
Daniel J. Povinelli ◽  
Gabrielle C. Glorioso ◽  
Shannon L. Kuznar ◽  
Mateja Pavlic

Abstract Hoerl and McCormack demonstrate that although animals possess a sophisticated temporal updating system, there is no evidence that they also possess a temporal reasoning system. This important case study is directly related to the broader claim that although animals are manifestly capable of first-order (perceptually-based) relational reasoning, they lack the capacity for higher-order, role-based relational reasoning. We argue this distinction applies to all domains of cognition.


1984 ◽  
Vol 75 ◽  
pp. 461-469 ◽  
Author(s):  
Robert W. Hart

ABSTRACTThis paper models maximum entropy configurations of idealized gravitational ring systems. Such configurations are of interest because systems generally evolve toward an ultimate state of maximum randomness. For simplicity, attention is confined to ultimate states for which interparticle interactions are no longer of first order importance. The planets, in their orbits about the sun, are one example of such a ring system. The extent to which the present approximation yields insight into ring systems such as Saturn's is explored briefly.


Author(s):  
Richard J. Spontak ◽  
Steven D. Smith ◽  
Arman Ashraf

Block copolymers are composed of sequences of dissimilar chemical moieties covalently bonded together. If the block lengths of each component are sufficiently long and the blocks are thermodynamically incompatible, these materials are capable of undergoing microphase separation, a weak first-order phase transition which results in the formation of an ordered microstructural network. Most efforts designed to elucidate the phase and configurational behavior in these copolymers have focused on the simple AB and ABA designs. Few studies have thus far targeted the perfectly-alternating multiblock (AB)n architecture. In this work, two series of neat (AB)n copolymers have been synthesized from styrene and isoprene monomers at a composition of 50 wt% polystyrene (PS). In Set I, the total molecular weight is held constant while the number of AB block pairs (n) is increased from one to four (which results in shorter blocks). Set II consists of materials in which the block lengths are held constant and n is varied again from one to four (which results in longer chains). Transmission electron microscopy (TEM) has been employed here to investigate the morphologies and phase behavior of these materials and their blends.


1991 ◽  
Vol 3 (1) ◽  
pp. 235-253 ◽  
Author(s):  
L. D. Philipp ◽  
Q. H. Nguyen ◽  
D. D. Derkacht ◽  
D. J. Lynch ◽  
A. Mahmood

Author(s):  
Julian M. Etzel ◽  
Gabriel Nagy

Abstract. In the current study, we examined the viability of a multidimensional conception of perceived person-environment (P-E) fit in higher education. We introduce an optimized 12-item measure that distinguishes between four content dimensions of perceived P-E fit: interest-contents (I-C) fit, needs-supplies (N-S) fit, demands-abilities (D-A) fit, and values-culture (V-C) fit. The central aim of our study was to examine whether the relationships between different P-E fit dimensions and educational outcomes can be accounted for by a higher-order factor that captures the shared features of the four fit dimensions. Relying on a large sample of university students in Germany, we found that students distinguish between the proposed fit dimensions. The respective first-order factors shared a substantial proportion of variance and conformed to a higher-order factor model. Using a newly developed factor extension procedure, we found that the relationships between the first-order factors and most outcomes were not fully accounted for by the higher-order factor. Rather, with the exception of V-C fit, all specific P-E fit factors that represent the first-order factors’ unique variance showed reliable and theoretically plausible relationships with different outcomes. These findings support the viability of a multidimensional conceptualization of P-E fit and the validity of our adapted instrument.


Sign in / Sign up

Export Citation Format

Share Document