Pharmacological evaluation of imidazole‐derived bisphosphonates on receptor activator of nuclear factor‐κB ligand‐induced osteoclast differentiation and function

2020 ◽  
Vol 97 (1) ◽  
pp. 121-133
Author(s):  
Jianguo Lin ◽  
Ying Peng ◽  
Qingzhu Liu ◽  
Ke Li ◽  
Gaochao Lv ◽  
...  
2020 ◽  
Vol 52 (4) ◽  
pp. 691-701 ◽  
Author(s):  
Eun Mi Go ◽  
Ju Hee Oh ◽  
Jin Hee Park ◽  
Soo Young Lee ◽  
Na Kyung Lee

Abstract Spi-C is an SPI-group erythroblast transformation-specific domain transcription factor expressed during B-cell development. Here, we report that Spi-C is a novel receptor activator of nuclear factor-κB ligand (RANKL)-inducible protein that positively regulates RANKL-mediated osteoclast differentiation and function. Knockdown of Spi-C decreased the expression of RANKL-induced nuclear factor of activated T-cells, cytoplasmic 1, receptor activator of nuclear factor-κB (RANK), and tartrate-resistant acid phosphatase (TRAP), resulting in a marked decrease in the number of TRAP-positive multinucleated cells. Spi-C-transduced bone marrow-derived monocytes/macrophages (BMMs) displayed a significant increase in osteoclast formation in the presence of RANKL. In addition, Spi-C-depleted cells failed to show actin ring formation or bone resorption owing to a marked reduction in the expression of RANKL-mediated dendritic cell-specific transmembrane protein and the d2 isoform of vacuolar (H+) ATPase V0 domain, which are known osteoclast fusion-related genes. Interestingly, RANKL stimulation induced the translocation of Spi-C from the cytoplasm into the nucleus during osteoclastogenesis, which was specifically blocked by inhibitors of p38 mitogen-activated protein kinase (MAPK) or PI3 kinase. Moreover, Spi-C depletion prevented RANKL-induced MAPK activation and the degradation of inhibitor of κB-α (IκBα) in BMMs. Collectively, these results suggest that Spi-C is a novel positive regulator that promotes both osteoclast differentiation and function.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4335-4343 ◽  
Author(s):  
Takeshi Miyamoto ◽  
Fumio Arai ◽  
Osamu Ohneda ◽  
Katsumasa Takagi ◽  
Dirk M. Anderson ◽  
...  

Abstract Identification of receptor activator of nuclear factor-κB (RANK) and RANK-ligand (RANKL) has provided new insights into the osteoclast differentiation pathway. Osteoclast precursor cells were isolated using monoclonal antibodies against c-Fms and RANK, and the effect of adherence on the in vitro differentiation and proliferation of these cells was examined in 2 different types of stromal-cell–free culture systems: a semisolid culture medium (a nonadherent system) and a liquid culture medium (an adherent system). Osteoclast precursor cells were not able to differentiate into mature osteoclasts efficiently in the semisolid culture system. Trimerized RANKL enhanced osteoclast differentiation in semisolid cultures, but not to the extent seen when cells were allowed to adhere to plastic. Initial precursor cells were capable of differentiating into macrophages or osteoclasts. Once these cells were transferred to adherent conditions, striking differentiation was induced. Multinuclear cells were observed even after they had displayed phagocytic activity, which suggests that cell adhesion plays an important role in the differentiation of osteoclast precursor cells. Integrins, especially the arginine-glycine-aspartic acid (RGD)–recognizing integrins αv and β3, were needed for osteoclast-committed precursor cells to proliferate in order to form multinuclear osteoclasts, and the increase in cell density affected the formation of multinuclear cells. A model of osteoclast differentiation with 2 stages of precursor development is proposed: (1) a first stage, in which precursor cells are bipotential and capable of anchorage-independent growth, and (2) a second stage, in which the further proliferation and differentiation of osteoclast-committed precursor cells is anchorage-dependent.


Endocrinology ◽  
2008 ◽  
Vol 149 (7) ◽  
pp. 3688-3697 ◽  
Author(s):  
Laurence Duplomb ◽  
Marc Baud’huin ◽  
Céline Charrier ◽  
Martine Berreur ◽  
Valérie Trichet ◽  
...  

Osteoclasts are bone-resorptive cells that differentiate from hematopoietic precursors upon receptor activator of nuclear factor κB ligand (RANKL) activation. Previous studies demonstrated that IL-6 indirectly stimulates osteoclastogenesis through the production of RANKL by osteoblasts. However, few data described the direct effect of IL-6 on osteoclasts. To investigate this effect, we used several models: murine RAW264.7 cells, mouse bone marrow, and human blood monocytes. In the three models used, the addition of IL-6 inhibited RANKL-induced osteoclastogenesis. Furthermore, IL-6 decreased the expression of osteoclast markers and up-modulated macrophage markers. To elucidate this inhibition, signal transducer and activator of transcription (STAT) 3, the main signaling molecule activated by IL-6, was analyzed. Addition of two STAT3 inhibitors completely abolished RANKL-induced osteoclastogenesis, revealing a key role of STAT3. We demonstrated that a basal level of phosphorylated-STAT3 on Serine727 associated with an absence of phosphorylation on Tyrosine705 is essential for osteoclastogenesis. Furthermore, a decrease of Serine727 phosphorylation led to an inhibition of osteoclast differentiation, whereas an increase of Tyrosine705 phosphorylation upon IL-6 stimulation led to the formation of macrophages instead of osteoclasts. In conclusion, we showed for the first time that IL-6 inhibits RANKL-induced osteoclastogenesis by diverting cells into the macrophage lineage, and demonstrated the functional role of activated-STAT3 and its form of phosphorylation in the control of osteoclastogenesis.


2016 ◽  
Vol 310 (8) ◽  
pp. C663-C672 ◽  
Author(s):  
Sébastien S. Dufresne ◽  
Nicolas A. Dumont ◽  
Antoine Boulanger-Piette ◽  
Val A. Fajardo ◽  
Daniel Gamu ◽  
...  

Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca2+ sensor, and altered activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) modulating Ca2+ storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca2+ storage and SERCA activity, ultimately affecting denervated skeletal muscle function.


2021 ◽  
Vol 28 (3) ◽  
pp. 223-230
Author(s):  
Jung Ha Kim ◽  
Yong Ryoul Yang ◽  
Ki-Sun Kwon ◽  
Nacksung Kim

Background: Multiple members of the transforming growth factor-β (TGF-β) superfamily have well-established roles in bone homeostasis. Anti-Müllerian hormone (AMH) is a member of TGF-β superfamily of glycoproteins that is responsible for the regression of fetal Müllerian ducts and the transcription inhibition of gonadal steroidogenic enzymes. However, the involvement of AMH in bone remodeling is unknown. Therefore, we investigated whether AMH has an effect on bone cells as other TGF-β superfamily members do.Methods: To identify the roles of AMH in bone cells, we administered AMH during osteoblast and osteoclast differentiation, cultured the cells, and then stained the cultured cells with Alizarin red and tartrate-resistant acid phosphatase, respectively. We analyzed the expression of osteoblast- or osteoclast-related genes using real-time polymerase chain reaction and western blot.Results: AMH does not affect bone morphogenetic protein 2-mediated osteoblast differentiation but inhibits receptor activator of nuclear factor-κB (NF-κB) ligand-induced osteoclast differentiation. The inhibitory effect of AMH on osteoclast differentiation is mediated by IκB-NF-κB signaling.Conclusions: AMH negatively regulates osteoclast differentiation without affecting osteoblast differentiation.


Sign in / Sign up

Export Citation Format

Share Document