Cosserat Rod with rh ‐Adaptive Discretization

2020 ◽  
Vol 39 (7) ◽  
pp. 143-154
Author(s):  
Jiahao Wen ◽  
Jiong Chen ◽  
Nobuyuki Umetani ◽  
Hujun Bao ◽  
Jin Huang
2010 ◽  
Vol 85 (1) ◽  
pp. 31-60 ◽  
Author(s):  
Pascal Jung ◽  
Sigrid Leyendecker ◽  
Joachim Linn ◽  
Michael Ortiz

2021 ◽  
Author(s):  
Rebecca Berthold ◽  
Max Niklas Bartholdt ◽  
Mats Wiese ◽  
Stephanie Kahms ◽  
Svenja Spindeldreier ◽  
...  

AIP Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 075020
Author(s):  
Suguru Ando ◽  
Mitsuru Nishikawa ◽  
Masayuki Kaneda ◽  
Kazuhiko Suga

Author(s):  
Martin Schulze ◽  
Stefan Dietz ◽  
Bernhard Burgermeister ◽  
Andrey Tuganov ◽  
Holger Lang ◽  
...  

Current challenges in industrial multibody system simulation are often beyond the classical range of application of existing industrial simulation tools. The present paper describes an extension of a recursive order-n multibody system (MBS) formulation to nonlinear models of flexible deformation that are of particular interest in the dynamical simulation of wind turbines. The floating frame of reference representation of flexible bodies is generalized to nonlinear structural models by a straightforward transformation of the equations of motion (EoM). The approach is discussed in detail for the integration of a recently developed discrete Cosserat rod model representing beamlike flexible structures into a general purpose MBS software package. For an efficient static and dynamic simulation, the solvers of the MBS software are adapted to the resulting class of MBS models that are characterized by a large number of degrees of freedom, stiffness, and high frequency components. As a practical example, the run-up of a simplified three-bladed wind turbine is studied where the dynamic deformations of the three blades are calculated by the Cosserat rod model.


2019 ◽  
Vol 37 (5) ◽  
pp. 1663-1682
Author(s):  
Jianming Zhang ◽  
Chuanming Ju ◽  
Baotao Chi

Purpose The purpose of this paper is to present a fast algorithm for the adaptive discretization of three-dimensional parametric curves. Design/methodology/approach The proposed algorithm computes the parametric increments of all segments to obtain the parametric coordinates of all discrete nodes. This process is recursively applied until the optimal discretization of curves is obtained. The parametric increment of a segment is inversely proportional to the number of sub-segments, which can be subdivided, and the sum of parametric increments of all segments is constant. Thus, a new expression for parametric increment of a segment can be obtained. In addition, the number of sub-segments, which a segment can be subdivided is calculated approximately, thus avoiding Gaussian integration. Findings The proposed method can use less CPU time to perform the optimal discretization of three-dimensional curves. The results of curves discretization can also meet requirements for mesh generation used in the preprocessing of numerical simulation. Originality/value Several numerical examples presented have verified the robustness and efficiency of the proposed algorithm. Compared with the conventional algorithm, the more complex the model, the more time the algorithm saves in the process of curve discretization.


Sign in / Sign up

Export Citation Format

Share Document