Utility of Right Ventricular Strain Imaging in Predicting Pulmonary Vascular Resistance in Patients With Pulmonary Hypertension

2012 ◽  
Vol 19 (3) ◽  
pp. 116-122 ◽  
Author(s):  
Nasim Naderi ◽  
Zahra Ojaghi Haghighi ◽  
Ahmad Amin ◽  
Farah Naghashzadeh ◽  
Hooman Bakhshandeh ◽  
...  
2017 ◽  
Vol 89 (12) ◽  
pp. 127-132
Author(s):  
A Sh Sarybaev ◽  
A S Sydykov ◽  
M A Sartmyrzaeva ◽  
A T Mamazhakypov ◽  
A M Maripov ◽  
...  

Pulmonary hypertension (PH) is a group of diseases characterized by increased pulmonary vascular resistance (PVR). Regardless of its cause, PH leads to right ventricular failure and premature death. Recent advances in the diagnosis and treatment of PH have prompted the elaboration of new guidelines for the diagnosis and treatment of PH. This paper provides a brief overview of major achievements in diagnostic and treatment approaches in patients PH.


2020 ◽  
Vol 9 (21) ◽  
Author(s):  
Hidenori Moriyama ◽  
Takashi Kawakami ◽  
Masaharu Kataoka ◽  
Takahiro Hiraide ◽  
Mai Kimura ◽  
...  

Background Right ventricular (RV) dysfunction is a prognostic factor for cardiovascular disease. However, its mechanism and pathophysiology remain unknown. We investigated RV function using RV‐specific 3‐dimensional (3D)‐speckle‐tracking echocardiography (STE) in patients with chronic thromboembolic pulmonary hypertension. We also assessed regional wall motion abnormalities in the RV and chronological changes during balloon pulmonary angioplasty (BPA). Methods and Results Twenty‐nine patients with chronic thromboembolic pulmonary hypertension who underwent BPA were enrolled and underwent right heart catheterization and echocardiography before, immediately after, and 6 months after BPA. Echocardiographic assessment of RV function included both 2‐dimensional‐STE and RV‐specific 3D‐STE. Before BPA, global area change ratio measured by 3D‐STE was significantly associated with invasively measured mean pulmonary artery pressure and pulmonary vascular resistance ( r =0.671 and r =0.700, respectively). Dividing the RV into the inlet, apex, and outlet, inlet area change ratio showed strong correlation with mean pulmonary artery pressure and pulmonary vascular resistance before BPA ( r =0.573 and r =0.666, respectively). Only outlet area change ratio was significantly correlated with troponin T values at 6 months after BPA ( r =0.470), and its improvement after BPA was delayed compared with the inlet and apex regions. Patients with poor outlet area change ratio were associated with a delay in RV reverse remodeling after treatment. Conclusions RV‐specific 3D‐STE analysis revealed that 3D RV parameters were novel useful indicators for assessing RV function and hemodynamics in pulmonary hypertension and that each regional RV portion presents a unique response to hemodynamic changes during treatment, implicating that evaluation of RV regional functions might lead to a new guide for treatment strategies.


Perfusion ◽  
1999 ◽  
Vol 14 (1) ◽  
pp. 37-42 ◽  
Author(s):  
J R Beck ◽  
L B Mongero ◽  
R M Kroslowitz ◽  
A F Choudhri ◽  
J M Chen ◽  
...  

Severe pulmonary hypertension and right-sided circulatory failure (RSCF) represent an increasing cause of morbidity and mortality in patients undergoing high-risk cardiac surgery. Increased pulmonary vascular resistance in the setting of cardiopulmonary bypass (CPB) may further lead to decreased blood flow across the pulmonary vascular bed; thereby decreasing left ventricular filling and cardiac output. Current management techniques for RSCF include both nonspecific vasodilator and inotropic agents (often limited by systemic hypotension) and the placement of right ventricular assist devices (associated with increased perioperative morbidity). Inhaled nitric oxide (NOi) represents a novel, specific pulmonary vasodilator that has been proven efficacious in these clinical settings. We evaluated 34 patients in 38 operations who underwent cardiac surgery at Columbia Presbyterian Medical Center, and who received NOi (20 ppm) through a modified ventilatory circuit for hemodynamically significant elevations in pulmonary vascular resistance. Nine patients underwent cardiac transplantation, three patients bilateral lung transplantation, 16 patients left ventricular assist device placement and 10 patients routine cardiac surgery. Patients receiving NOi exhibited substantial reductions in mean pulmonary artery pressure (mPAP) (34.6 ± 2.0 to 26.0 ± 1.7 mmHg, p < 0.0001), with improvements in systemic hemodynamics, mean arterial pressure (68 ± 3.1 to 75.9 ± 2.0 mmHg, p = 0.006). In five cases, patients could not be weaned from CPB until NOi was administered. Patients were maintained on NOi from 6 to 240 h postoperatively (median duration 36 h). Inhaled NO induces substantial reductions in mPAP and increases in both cardiac index and systemic blood pressure in patients displaying elevated pulmonary hemodynamics after high-risk cardiac surgery. NO is, therefore, a useful adjunct in these patients in whom acute pulmonary hypertension threatens right ventricular function and hemodynamic stability.


Sign in / Sign up

Export Citation Format

Share Document