One-stage minimally invasive combined laparoscopic hepatic resection and robot-assisted right hemicolectomy and abdominoperineal resection - a video vignette

2014 ◽  
Vol 16 (11) ◽  
pp. 930-930 ◽  
Author(s):  
J. Desiderio ◽  
S. Trastulli ◽  
R. Cirocchi ◽  
F. Ricci ◽  
C. Boselli ◽  
...  
2004 ◽  
Vol 7 (6) ◽  
pp. E533-E534 ◽  
Author(s):  
Timothy P. Martens ◽  
Marco M. Hefti ◽  
Robert Kalimi ◽  
Craig R. Smith ◽  
Michael Argenziano

Author(s):  
Hang Su ◽  
Andrea Mariani ◽  
Salih Ertug Ovur ◽  
Arianna Menciassi ◽  
Giancarlo Ferrigno ◽  
...  

Author(s):  
Hang Su ◽  
Junhao Zhang ◽  
Ziyu She ◽  
Xin Zhang ◽  
Ke Fan ◽  
...  

AbstractRemote center of motion (RCM) constraint has attracted many research interests as one of the key challenges for robot-assisted minimally invasive surgery (RAMIS). Although it has been addressed by many studies, few of them treated the motion constraint with an independent workspace solution, which means they rely on the kinematics of the robot manipulator. This makes it difficult to replicate the solutions on other manipulators, which limits their population. In this paper, we propose a novel control framework by incorporating model predictive control (MPC) with the fuzzy approximation to improve the accuracy under the motion constraint. The fuzzy approximation is introduced to manage the kinematic uncertainties existing in the MPC control. Finally, simulations were performed and analyzed to validate the proposed algorithm. By comparison, the results prove that the proposed algorithm achieved success and satisfying performance in the presence of external disturbances.


Author(s):  
Wen Qi ◽  
Hang Su ◽  
Ke Fan ◽  
Ziyang Chen ◽  
Jiehao Li ◽  
...  

The generous application of robot-assisted minimally invasive surgery (RAMIS) promotes human-machine interaction (HMI). Identifying various behaviors of doctors can enhance the RAMIS procedure for the redundant robot. It bridges intelligent robot control and activity recognition strategies in the operating room, including hand gestures and human activities. In this paper, to enhance identification in a dynamic situation, we propose a multimodal data fusion framework to provide multiple information for accuracy enhancement. Firstly, a multi-sensors based hardware structure is designed to capture varied data from various devices, including depth camera and smartphone. Furthermore, in different surgical tasks, the robot control mechanism can shift automatically. The experimental results evaluate the efficiency of developing the multimodal framework for RAMIS by comparing it with a single sensor system. Implementing the KUKA LWR4+ in a surgical robot environment indicates that the surgical robot systems can work with medical staff in the future.


Sign in / Sign up

Export Citation Format

Share Document