Chronic myelomonocytic leukemia masquerading as cutaneous indeterminate dendritic cell tumor: Expanding the spectrum of skin lesions in chronic myelomonocytic leukemia

2017 ◽  
Vol 44 (12) ◽  
pp. 1075-1079 ◽  
Author(s):  
Sanam Loghavi ◽  
Jonathan L. Curry ◽  
Guillermo Garcia-Manero ◽  
Keyur P. Patel ◽  
Jie Xu ◽  
...  
2020 ◽  
Vol 42 (11) ◽  
pp. 876-880 ◽  
Author(s):  
Angel Santos-Briz ◽  
Mario Medina-Miguelañez ◽  
David Moyano-Bueno ◽  
Alex Viñolas-Cuadros ◽  
Teresa G. Martínez ◽  
...  

2013 ◽  
Vol 88 (1) ◽  
pp. 131-133 ◽  
Author(s):  
Paula Maio ◽  
Candida Fernandes ◽  
Ana Afonso ◽  
Fernanda Sachse ◽  
José Cabeçadas ◽  
...  

Blastic plasmacytoid dendritic cell tumor is a rare, highly aggressive systemic neoplasm for which effective therapies have not yet been established. We describe a 73-year-old man with multiple nodules and patches emerging on the trunk and limbs. Lesional skin biopsy revealed a plasmacytoid dendritic cell tumor with dense dermal infiltrate of tumor cells with blastoid features. No apparent systemic involvement was identified in the initial stage. The patient was treated with prednisone daily, with notorious improvement of the skin lesions, although no complete remission was obtained. During the six-month follow-up period, no disease progression was documented, but fatal systemic progression occurred after that period of time.


Leukemia ◽  
2017 ◽  
Vol 31 (5) ◽  
pp. 1238-1240 ◽  
Author(s):  
L Brunetti ◽  
V Di Battista ◽  
A Venanzi ◽  
G Schiavoni ◽  
M P Martelli ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4344-4344
Author(s):  
Abhishek A. Mangaonkar ◽  
Kaaren K. Reichard ◽  
April Chiu ◽  
Matthew T Howard ◽  
Rebecca L King ◽  
...  

Abstract Introduction: Chronic myelomonocytic leukemia (CMML) is a chronic myeloid malignancy associated with monocytosis, autoimmunity (~30%) & an inherent risk for leukemic transformation. Bone marrow (BM) dendritic cell (DC) populations occur in ~30% of patients, with a poorly defined biological & prognostic role. The malignant immune microenvironment is regulated by indoleamine 2,3-dioxygenase-1 (IDO-1) expressing DCs, which modulate regulatory T (Treg) cells & block their conversion into proinflammatory T helper (Th17)-like cells. IDO-1 is a known immune checkpoint & functions by catabolizing tryptophan, an amino acid essential for T cell function. We hypothesized that distinct IDO-1 expressing DC populations in CMML modulate Tregs & contribute towards immune tolerance & aggressive disease biology. Methods: Primary diagnostic CMML peripheral blood mononuclear cells (PBMC) & BM biopsy specimens were obtained after Mayo Clinic IRB approval. A DC population was defined on H&E stained biopsy sections as focal collections (>10) of cells with characteristic elongated nuclei & cytoplasmic extensions. Transcriptomic & protein expression studies assessing IDO-1 expression were done by previously described methods. In addition, IHC expression of PD-1, PD-L1 & CTLA-4 was also done. IDO-1 promoter methylation studies with DIP-seq were performed. The impact on immune tolerance was assessed using mass cytometry (CyTOF). Results: Cohort: Twenty eight patients with CMML were included in the study, median age 70 (range: 51-80) years; 71% males. Eleven (39%) patients had coexisting autoimmune conditions. Of these, 8 (73%) had detectable DC populations either at diagnosis, or during the course of their disease. At a median follow-up of 46 (95% CI 27, 84) months, there were 14 (50%) deaths & 9 (32%) leukemic transformations.IHC results: Nine (32%) patients were identified to have a DC population at CMML diagnosis. CD123 & TCL1 staining was performed in 5 (56%) patients, with 3 being positive for both, & 2 positive for CD123 only (additional IHC studies ongoing). IDO1 expression by IHC was documented in all 9 (100%) cases (Fig 1A & 1B), while rare populations of PD-1, PD-L1 & CTLA-4 lymphocytes were also seen in all cases. Due to the low DC burdens (median cellularity ≤ 5%) & uniform staining intensity, IHC-based grading was not done. Samples at serial time-points, post-HMA therapy & at the time of blast transformation, were available in 5 & 3 patients respectively. Among the patients who did not have DC populations at diagnosis, 5 (42%) developed them post-HMA therapy, while 3 (50%) developed them at the time of LT. The development of DC populations was associated with loss of response to HMA (50%) & disease progression (50%).Transcriptomic analysis: RNA expression data was available on 7 (25%) patients, of whom only 1 (14%) had DC populations at diagnosis. The IDO-1 RPKM value in the former was higher than the mean pooled value in the latter group (330 versus 74, p=0.05).Methylation studies: DIP-seq was performed on 12 (43%) cases from the primary IHC cohort. Qualitative analysis of IDO-1 promoter hypomethylation was conducted & confirmed in all 9 (100%) cases with 5-mC & 5-hmC marks compared to input as displayed in figure 1C.Immune profiling: CyTOF was performed on 4 CMML samples (3 with IDO-1 expressing DC populations at diagnosis) from the primary IHC cohort & compared to a normal PBMC control. Results confirmed an increase in DC populations (fig 1D& 1E), & reduced % of Th17-like T cells in CMML samples compared to control (1.1 versus 5.07, p=0.05, fig 1F).Clinical correlates & survival analysis: With the exception that CMML patients with DC populations had a higher frequency of NRAS (P=0.007) mutations, the two groups were comparable for cytogenetic & molecular abnormalities. The median OS for the cohort was 45 (95% CI 29, 84) months. CMML patients with IDO-1 expressing DC populations at diagnosis had a shorter median OS, in comparison to those without (median OS 30 vs 45, p=0.03, Kaplan-Meier analysis in fig 1G). Conclusions: In conclusion, we demonstrate that DC populations are seen in ~30% of patients with CMML with a uniform expression of IDO-1 & limited expression of PD-1, PD-L1 & CTLA-4. CMML patients with BM DC populations have a higher frequency of NRAS mutations & DC IDO-1 expression is associated with tumor induced immune tolerance. Additional IHC, genomic & preclinical studies with IDO-1 inhibitors are ongoing. Figure 1. Figure 1. Disclosures Al-Kali: Novartis: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document