scholarly journals Second heart field and the development of the outflow tract in human embryonic heart

2013 ◽  
Vol 55 (3) ◽  
pp. 359-367 ◽  
Author(s):  
Yan-Ping Yang ◽  
Hai-Rong Li ◽  
Xi-Mei Cao ◽  
Qin-Xue Wang ◽  
Cong-Jin Qiao ◽  
...  

2014 ◽  
Vol 56 (4) ◽  
pp. 276-292 ◽  
Author(s):  
Shi Liang ◽  
Hui-Chao Li ◽  
Yun-Xiu Wang ◽  
Shan-Shan Wu ◽  
Yu-Jin Cai ◽  
...  


ESC CardioMed ◽  
2018 ◽  
pp. 33-36
Author(s):  
Robert G. Kelly

The embryonic heart forms in anterior lateral splanchnic mesoderm and is derived from Mesp1-expressing progenitor cells. During embryonic folding, the earliest differentiating progenitor cells form the linear heart tube in the ventral midline. The heart tube extends in length and loops to the right as new myocardium is progressively added at the venous and arterial poles from multipotent second heart field cardiovascular progenitor cells in contiguous pharyngeal mesoderm. While the linear heart tube gives rise to the left ventricle, the right ventricle, outflow tract, and a large part of atrial myocardium are derived from the second heart field. Progressive myocardial differentiation is controlled by intercellular signals within the progenitor cell niche. The embryonic heart is the template for septation and growth of the four-chambered definitive heart and defects in progenitor cell deployment result in a spectrum of common forms of congenital heart defects.



2019 ◽  
Vol 28 (14) ◽  
pp. 2295-2308 ◽  
Author(s):  
Daniela Alfano ◽  
Alessandra Altomonte ◽  
Claudio Cortes ◽  
Marchesa Bilio ◽  
Robert G Kelly ◽  
...  

Abstract Tbx1, the major candidate gene for DiGeorge or 22q11.2 deletion syndrome, is required for efficient incorporation of cardiac progenitors of the second heart field (SHF) into the heart. However, the mechanisms by which TBX1 regulates this process are still unclear. Here, we have used two independent models, mouse embryos and cultured cells, to define the role of TBX1 in establishing morphological and dynamic characteristics of SHF in the mouse. We found that loss of TBX1 impairs extracellular matrix (ECM)-integrin-focal adhesion (FA) signaling in both models. Mosaic analysis in embryos suggested that this function is non-cell autonomous, and, in cultured cells, loss of TBX1 impairs cell migration and FAs. Additionally, we found that ECM-mediated integrin signaling is disrupted upon loss of TBX1. Finally, we show that interfering with the ECM-integrin-FA axis between E8.5 and E9.5 in mouse embryos, corresponding to the time window within which TBX1 is required in the SHF, causes outflow tract dysmorphogenesis. Our results demonstrate that TBX1 is required to maintain the integrity of ECM-cell interactions in the SHF and that this interaction is critical for cardiac outflow tract development. More broadly, our data identifies a novel TBX1 downstream pathway as an important player in SHF tissue architecture and cardiac morphogenesis.



PLoS ONE ◽  
2009 ◽  
Vol 4 (7) ◽  
pp. e6267 ◽  
Author(s):  
Francesca Rochais ◽  
Mathieu Dandonneau ◽  
Karim Mesbah ◽  
Thérèse Jarry ◽  
Marie-Geneviève Mattei ◽  
...  




2008 ◽  
Vol 313 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Fanny Bajolle ◽  
Stéphane Zaffran ◽  
Sigolène M. Meilhac ◽  
Mathieu Dandonneau ◽  
Ted Chang ◽  
...  


2009 ◽  
Vol 333 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Laurent Dupays ◽  
Surendra Kotecha ◽  
Brigitt Angst ◽  
Timothy J. Mohun


PLoS Genetics ◽  
2014 ◽  
Vol 10 (12) ◽  
pp. e1004871 ◽  
Author(s):  
Simon A. Ramsbottom ◽  
Vipul Sharma ◽  
Hong Jun Rhee ◽  
Lorraine Eley ◽  
Helen M. Phillips ◽  
...  


ESC CardioMed ◽  
2018 ◽  
pp. 33-36
Author(s):  
Robert G. Kelly

The embryonic heart forms in anterior lateral splanchnic mesoderm and is derived from Mesp1-expressing progenitor cells. During embryonic folding, the earliest differentiating progenitor cells form the linear heart tube in the ventral midline. The heart tube extends in length and loops to the right as new myocardium is progressively added at the venous and arterial poles from multipotent second heart field cardiovascular progenitor cells in contiguous pharyngeal mesoderm. While the linear heart tube gives rise to the left ventricle, the right ventricle, outflow tract, and a large part of atrial myocardium are derived from the second heart field. Progressive myocardial differentiation is controlled by intercellular signals within the progenitor cell niche. The embryonic heart is the template for septation and growth of the four-chambered definitive heart and defects in progenitor cell deployment result in a spectrum of common forms of congenital heart defects.



2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Kazuki Kodo ◽  
Shinsuke Shibata ◽  
Sachiko Miyagawa-Tomita ◽  
Sang-Ging Ong ◽  
Hiroshi Takahashi ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document