Spatial partitioning of perching on plants by tropical dung beetles depends on body size and leaf characteristics: a sit‐and‐wait strategy for food location

2020 ◽  
Vol 45 (5) ◽  
pp. 1108-1120 ◽  
Author(s):  
Jorge Ari Noriega ◽  
Martí March‐Salas ◽  
Luis R. Pertierra ◽  
Kevina Vulinec
2009 ◽  
Vol 26 (1) ◽  
pp. 53-65 ◽  
Author(s):  
Shahabuddin ◽  
Purnama Hidayat ◽  
Sjafrida Manuwoto ◽  
Woro A. Noerdjito ◽  
Teja Tscharntke ◽  
...  

Abstract:Dung beetles are a functionally important component of most terrestrial ecosystems, but communities change with habitat disturbance and deforestation. In this study, we tested if dung beetle ensembles on dung of introduced cattle and of the endemic anoa, a small buffalo, are affected differentially by habitat disturbance. Therefore, we exposed 10 pitfall traps, five baited with anoa and five baited with cattle dung, per site in six habitat types ranging from natural and selectively logged rain forest to three types of agroforestry system (characterized by different management intensity) and open areas (n = 4 replicate sites per habitat type) at the margin of Lore Lindu National Park, Central Sulawesi, Indonesia. We found 28 species, 43% of which were endemic to Sulawesi. Species richness, abundance and biomass declined from natural forest towards open area. Large-bodied species appeared to be more sensitive to habitat disturbance and the ratio of large to small-sized dung beetles declined with land-use intensity. Although selectively logged forest and cocoa agroforestry systems had lower species richness compared with natural forest, they appeared to maintain a high portion of species originally inhabiting forest sites. The similarity of dung beetle ensembles recorded at forest and agroforestry sites reflects the high similarity of some habitat variables (e.g. vegetation structure and microclimate) between both habitat types compared with open areas. Species richness and abundances as well as species composition, which was characterized by decreases in mean body size, changed with land-use intensity, indicating that dung type is less important than habitat type for determining ensemble structure of these Indonesian dung beetles.


2010 ◽  
Vol 26 (5) ◽  
pp. 481-496 ◽  
Author(s):  
Heidi Viljanen ◽  
Helena Wirta ◽  
Olivier Montreuil ◽  
Pierre Rahagalala ◽  
Steig Johnson ◽  
...  

Abstract:The wet tropical forests in Madagascar have endemic dung beetles that have radiated for tens of millions of years using a limited range of resources produced by the species-poor mammalian fauna. Beetles were trapped in two wet-forest localities over 4 years (6407 trap nights, 18,869 individuals). More limited data for six other local communities were used to check the generality of the results. Local communities are relatively species poor (around 30 species) in comparison with wet-forest-inhabiting dung beetle communities elsewhere in the tropics (typically 50 or more species). The species belong to only two tribes, Canthonini and Helictopleurina (Oniticellini), which have evolved, exceptionally for dung beetle tribes, completely nocturnal versus diurnal diel activities, respectively. Patterns in the elevational occurrence, body size and resource use suggest that interspecific competition restricts the numbers of locally coexisting species exploiting the limited range of resources that are available. On the other hand, regional turnover in the species composition is exceptionally high due to a large number of species with small geographical ranges, yielding a very large total fauna of dung beetles in Madagascar (>250 species). Apart from exceptionally low local (alpha) diversity and high beta diversity, the Malagasy dung beetle communities are ecologically distinctive from comparable communities in other tropical regions in having high numerical dominance of the most abundant species, small average body size and low degree of resource specialization.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 141
Author(s):  
Roisin Stanbrook ◽  
Edwin Harris ◽  
Martin Jones ◽  
Charles Philip Wheater

Despite recognition of its importance, little is known about functional aspects of soil macrofauna. Here, we investigated the effect of dung beetle body size on macronutrient movement (N, P, K, and C) from elephant dung into soil over 112 days in an Afrotropical forest. We report a large overall effect where more macronutrients are moved into soil over time when beetles are present compared to a control treatment. We also report a large effect of beetle body size on the amount of macronutrient movement, with larger dung beetles moving more nitrogen, phosphorus, potassium, and carbon from baseline measurements when compared to smaller sized dung beetles. The presence of smaller sized dung beetles showed a significant positive effect on potassium and phosphorus transfer only. We provide the first experimental evidence that the body size of African dungs directly influences the type of macronutrients recycled and discuss the importance of dung beetle body size for maintaining soil fertility.


2011 ◽  
Vol 11 (13) ◽  
pp. 1-14 ◽  
Author(s):  
Malva I. M. Hernández ◽  
Leandro R. Monteiro ◽  
Mario E. Favila

Ecography ◽  
2001 ◽  
Vol 24 (5) ◽  
pp. 511-524 ◽  
Author(s):  
Tomas Roslin

Sign in / Sign up

Export Citation Format

Share Document