scholarly journals Does sand content in spawning substrate result in early larval emergence? Evidence from a lithophilic cyprinid fish

2018 ◽  
Vol 28 (1) ◽  
pp. 110-122 ◽  
Author(s):  
Tea Bašić ◽  
J. Robert Britton ◽  
Stephen P. Rice ◽  
Andrew G. Pledger

2009 ◽  
Vol 24 (4) ◽  
pp. 224-234 ◽  
Author(s):  
Anna Hakuć-Błażowska ◽  
Krzysztof Kupren ◽  
Konrad Turkowski ◽  
Katarzyna Targońska ◽  
Marta Jamróz ◽  
...  


2016 ◽  
Vol 53 (1) ◽  
pp. 5-28 ◽  
Author(s):  
Grace Ford ◽  
David Pyles ◽  
Marieke Dechesne

A continuous window into the fluvial-lacustrine basin-fill succession of the Uinta Basin is exposed along a 48-mile (77-kilometer) transect up the modern Green River from Three Fords to Sand Wash in Desolation Canyon, Utah. In ascending order the stratigraphic units are: 1) Flagstaff Limestone, 2) lower Wasatch member of the Wasatch Formation, 3) middle Wasatch member of the Wasatch Formation, 4) upper Wasatch member of the Wasatch Formation, 5) Uteland Butte member of the lower Green River Formation, 6) lower Green River Formation, 7) Renegade Tongue of the lower Green River Formation, 8) middle Green River Formation, and 9) the Mahogany oil shale zone marking the boundary between the middle and upper Green River Formations. This article uses regional field mapping, geologic maps, photographs, and descriptions of the stratigraphic unit including: 1) bounding surfaces, 2) key upward stratigraphic characteristics within the unit, and 3) longitudinal changes along the river transect. This information is used to create a north-south cross section through the basin-fill succession and a detailed geologic map of Desolation Canyon. The cross section documents stratigraphic relationships previously unreported and contrasts with earlier interpretations in two ways: 1) abrupt upward shifts in the stratigraphy documented herein, contrast with the gradual interfingering relationships proposed by Ryder et al., (1976) and Fouch et al., (1994), 2) we document fluvial deposits of the lower and middle Wasatch to be distinct and more widespread than previously recognized. In addition, we document that the Uteland Butte member of the lower Green River Formation was deposited in a lacustrine environment in Desolation Canyon. Two large-scale (member-scale) upward patterns are noted: Waltherian, and non-Waltherian. The upward successions in Waltherian progressions record progradation or retrogradation of a linked fluvial-lacustrine system across the area; whereas the upward successions in non-Waltherian progressions record large-scale changes in the depositional system that are not related to progradation or retrogradation of the ancient lacustrine shoreline. Four Waltherian progressions are noted: 1) the Flagstaff Limestone to lower Wasatch Formation member records the upward transition from lacustrine to fluvial—or shallowing-upward succession; 2) the upper Wasatch to Uteland Butte records the upward transition from fluvial to lacustrine—or a deepening upward succession; 3) the Uteland Butte to Renegade Tongue records the upward transition from lacustrine to fluvial—a shallowing-upward succession; and 4) the Renegade Tongue to Mahogany oil shale interval records the upward transition from fluvial to lacustrine—a deepening upward succession. The two non-Waltherian progressions in the study area are: 1) the lower to middle Wasatch, which records the abrupt shift from low to high net-sand content fluvial system, and 2) the middle to upper Wasatch, which records the abrupt shift from high to intermediate net-sand content fluvial system.



2019 ◽  
Vol 50 (3) ◽  
pp. 876-881
Author(s):  
Mafalda M. R. S. Catarino ◽  
Mónica R. S. Gomes ◽  
Susana M. F. Ferreira ◽  
Sílvia C. Gonçalves
Keyword(s):  


1989 ◽  
Vol 12 (5) ◽  
pp. 415-437 ◽  
Author(s):  
N. E. DOWN ◽  
J. F. LEATHERLAND


1988 ◽  
Vol 68 (2) ◽  
pp. 209-221 ◽  
Author(s):  
C. Chang ◽  
T. G. SOMMERFELDT ◽  
T. ENTZ

Knowledge of the variability of soluble salt content in saline soils can assist in designing experiments or developing management practices to manage and reclaim salt-affected soils. Geostatistical theory enables the use of spatial dependence of soil properties to obtain information about locations in the field that are not actually measured, but classical statistical methods do not consider spatial correlation and the relative location of samples. A study was carried out using both classical statistics and geostatistical methods to delineate salinity and sand content and their variability in a small area of irrigated saline soil. Soil samples were taken for electrical conductivity (EC) and particle size distribution determinations at 64 locations from a 20 × 25-m area, on an 8 × 8-grid pattern at depth intervals of 0–15, 15–30, 30–60, 60–90 and 90–120 cm. The high coefficient of variation (CV) values of both EC and sand content indicated that the soil was highly variable with respect to these soil properties. The semivariograms of sand content of the first two depth intervals and EC of all the depth intervals showed strong spatial relationships. Contour maps, generated by block kriging, based on spatial relationships provide estimated variances which are smaller than general variances calculated by the classical statistical method. The interpolated EC results by both ordinary and universal kriging methods were compared and were almost identical. The kriged maps can provide information useful for designing experiments and for determining soil sampling strategy. Key words: Salinity, texture, variability, geostatistics, semivariogram, kriging



2008 ◽  
Vol 24 (2) ◽  
pp. 213-217 ◽  
Author(s):  
I. D. Leonardos ◽  
A. C. Tsikliras ◽  
V. Eleftheriou ◽  
Y. Cladas ◽  
I. Kagalou ◽  
...  


2005 ◽  
Vol 52 (2) ◽  
pp. 152-157 ◽  
Author(s):  
Tetsuya Sado ◽  
Seishi Kimura




Sign in / Sign up

Export Citation Format

Share Document