Effect of the phase of force production on corticomuscular coherence with agonist and antagonist muscles

2018 ◽  
Vol 48 (10) ◽  
pp. 3288-3298 ◽  
Author(s):  
Gauthier Desmyttere ◽  
Emilie Mathieu ◽  
Mickael Begon ◽  
Emilie Simoneau‐Buessinger ◽  
Sylvain Cremoux
2002 ◽  
Vol 88 (4) ◽  
pp. 2000-2018 ◽  
Author(s):  
Brian D. Corneil ◽  
Etienne Olivier ◽  
Douglas P. Munoz

We report neck muscle activity and head movements evoked by electrical stimulation of the superior colliculus (SC) in head-unrestrained monkeys. Recording neck electromyography (EMG) circumvents complications arising from the head's inertia and the kinetics of muscle force generation and allows precise assessment of the neuromuscular drive to the head plant. This study served two main purposes. First, we sought to test the predictions made in the companion paper of a parallel drive from the SC onto neck muscles. Low-current, long-duration stimulation evoked both neck EMG responses and head movements either without or prior to gaze shifts, testifying to a SC drive to neck muscles that is independent of gaze-shift initiation. However, gaze-shift initiation was linked to a transient additional EMG response and head acceleration, confirming the presence of a SC drive to neck muscles that is dependent on gaze-shift initiation. We forward a conceptual neural architecture and suggest that this parallel drive provides the oculomotor system with the flexibility to orient the eyes and head independently or together, depending on the behavioral context. Second, we compared the EMG responses evoked by SC stimulation to those that accompanied volitional head movements. We found characteristic features in the underlying pattern of evoked neck EMG that were not observed during volitional head movements in spite of the seemingly natural kinematics of evoked head movements. These features included reciprocal patterning of EMG activity on the agonist and antagonist muscles during stimulation, a poststimulation increase in the activity of antagonist muscles, and synchronously evoked responses on agonist and antagonist muscles regardless of initial horizontal head position. These results demonstrate that the electrically evoked SC drive to the head cannot be considered as a neural replicate of the SC drive during volitional head movements and place important new constraints on the interpretation of electrically evoked head movements.


2007 ◽  
Vol 21 (3) ◽  
pp. 757-762 ◽  
Author(s):  
TRAVIS W. BECK ◽  
TERRY J. HOUSH ◽  
GLEN O. JOHNSON ◽  
JOSEPH P. WEIR ◽  
JOEL T. CRAMER ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Maxime Fauvet ◽  
David Gasq ◽  
Alexandre Chalard ◽  
Joseph Tisseyre ◽  
David Amarantini

The neural control of muscular activity during a voluntary movement implies a continuous updating of a mix of afferent and efferent information. Corticomuscular coherence (CMC) is a powerful tool to explore the interactions between the motor cortex and the muscles involved in movement realization. The comparison of the temporal dynamics of CMC between healthy subjects and post-stroke patients could provide new insights into the question of how agonist and antagonist muscles are controlled related to motor performance during active voluntary movements. We recorded scalp electroencephalography activity, electromyography signals from agonist and antagonist muscles, and upper limb kinematics in eight healthy subjects and seventeen chronic post-stroke patients during twenty repeated voluntary elbow extensions and explored whether the modulation of the temporal dynamics of CMC could contribute to motor function impairment. Concomitantly with the alteration of elbow extension kinematics in post-stroke patients, dynamic CMC analysis showed a continuous CMC in both agonist and antagonist muscles during movement and highlighted that instantaneous CMC in antagonist muscles was higher for post-stroke patients compared to controls during the acceleration phase of elbow extension movement. In relation to motor control theories, our findings suggest that CMC could be involved in the online control of voluntary movement through the continuous integration of sensorimotor information. Moreover, specific alterations of CMC in antagonist muscles could reflect central command alterations of the selectivity in post-stroke patients.


Sign in / Sign up

Export Citation Format

Share Document