Ecological factors affecting flight initiation distance in Daurian ground squirrels ( Spermophilus dauricus )

Ethology ◽  
2019 ◽  
Vol 125 (7) ◽  
pp. 415-420
Author(s):  
Ling‐Ying Shuai ◽  
Yang Zhou ◽  
Yu‐Xia Yang ◽  
Qi‐Qian Xue ◽  
Zi‐Yang Xie ◽  
...  
2006 ◽  
Vol 70 (6) ◽  
pp. 1796-1800 ◽  
Author(s):  
PERRI K. EASON ◽  
PETER T. SHERMAN ◽  
OTWELL RANKIN ◽  
BRIAN COLEMAN

2006 ◽  
Vol 84 (4) ◽  
pp. 495-504 ◽  
Author(s):  
W.E. Cooper

Approach distance (flight initiation distance) and escape methods depend on predation risk. I studied escape methods and effects of risk factors (temperature, perch height and orientation, conspicuousness) on approach distance in seven Puerto Rican anoles. Approach distance increased as temperature decreased in Anolis gundlachi Peters, 1876, presumably because of decreasing running speed, but not in other species (probably because of narrow temperature range). Perch height and approach distance varied inversely in four arboreal species that escape upward, positively in two grass–bush species that are more conspicuous when higher and flee downward, and were unrelated in cryptic Anolis stratulus Cope, 1861. Approach distance was shortest in cryptic A. stratulus and shorter intraspecifically in three species for partially concealed lizards and at sites providing more cover in two species. Approach distance was shorter for A. gundlachi on vertical than nonvertical perches, suggesting that ease of escape upward affects assessed risk. Escape behaviours have been proposed to vary among anole ecomorphs. Grass–bush species fled downward as proposed, or horizontally near ground level. Contrary to predictions of escape downward by trunk–ground and upward by trunk–crown anoles, all arboreal species escaped upward. Only trunk anoles were proposed to use squirreling, but species from four ecomorphs did as well.


2005 ◽  
Vol 83 (8) ◽  
pp. 1045-1050 ◽  
Author(s):  
W E Cooper, Jr.

The distance separating predator and prey when the predator begins to approach, starting distance, was recently shown to affect flight initiation distance in many bird species, raising questions about the effect's generality, variation with ecological factors, and economic basis. I studied the effect in two lizard species that forage by ambush and escape into nearby refuges. Monitoring costs during approach are absent because ambushers remain immobile while scanning for prey and predators. Risks are minimized because of the proximity to refuge. Flight initiation distance increased weakly with starting distance in Sceloporus virgatus Smith, 1938 significantly only at rapid approach speed. It was not significant in Urosaurus ornatus (Baird and Girard, 1852) at slow approach speed. Flight initiation distance is predicted to increase with starting distance, owing to monitoring costs and assessment by prey of greater risk during prolonged approaches. The significant effect in S. virgatus, which lacks monitoring costs, is the first indication that risk affects the relationship between starting distance and flight initiation distance. Conditions in which starting distance is important and its possible effects in earlier studies are discussed, as well as standardizing approaches and possible artifactual effects of starting distance.


2019 ◽  
Vol 3 (3) ◽  
pp. 69-93
Author(s):  
Young-soo Kim ◽  
◽  
Su-yon Kim ◽  
Won-sup Ryu ◽  
Soo-eun Park ◽  
...  

2013 ◽  
Vol 9 (5) ◽  
pp. 20130417 ◽  
Author(s):  
Pierre Legagneux ◽  
Simon Ducatez

Behavioural responses can help species persist in habitats modified by humans. Roads and traffic greatly affect animals' mortality not only through habitat structure modifications but also through direct mortality owing to collisions. Although species are known to differ in their sensitivity to the risk of collision, whether individuals can change their behaviour in response to this is still unknown. Here, we tested whether common European birds changed their flight initiation distances (FIDs) in response to vehicles according to road speed limit (a known factor affecting killing rates on roads) and vehicle speed. We found that FID increased with speed limit, although vehicle speed had no effect. This suggests that birds adjust their flight distance to speed limit, which may reduce collision risks and decrease mortality maximizing the time allocated to foraging behaviours. Mobility and territory size are likely to affect an individuals' ability to respond adaptively to local speed limits.


Oecologia ◽  
1997 ◽  
Vol 111 (3) ◽  
pp. 350-356 ◽  
Author(s):  
Africa Gómez ◽  
María José Carmona ◽  
Manuel Serra

Sign in / Sign up

Export Citation Format

Share Document