scholarly journals Regulation of bacterial Type III Secretion System export gate opening by substrates and the FliJ stalk of the flagellar ATPase

FEBS Journal ◽  
2021 ◽  
Author(s):  
Owain J. Bryant ◽  
Gillian M. Fraser
2010 ◽  
Vol 10 (1) ◽  
pp. 21 ◽  
Author(s):  
Michael L Barta ◽  
Lingling Zhang ◽  
Wendy L Picking ◽  
Brian V Geisbrecht

2009 ◽  
Vol 19 (5) ◽  
pp. 1340-1343 ◽  
Author(s):  
Toni Kline ◽  
Kathleen C. Barry ◽  
Stona R. Jackson ◽  
Heather B. Felise ◽  
Hai V. Nguyen ◽  
...  

2020 ◽  
Author(s):  
Hanh N. Lam ◽  
Tannia Lau ◽  
Adam Lentz ◽  
Jessica Sherry ◽  
Alejandro Cabrera-Cortez ◽  
...  

ABSTRACTAntibiotic resistant bacteria are an emerging global health threat. New antimicrobials are urgently needed. The injectisome type III secretion system (T3SS), required by dozens of Gram-negative bacteria for virulence but largely absent from non-pathogenic bacteria, is an attractive antimicrobial target. We previously identified synthetic cyclic peptomers, inspired by the natural product phepropeptin D, that inhibit protein secretion through the Yersinia Ysc and Pseudomonas aeruginosa Psc T3SSs, but do not inhibit bacterial growth. Here we describe identification of an isomer, 4EpDN, that is two-fold more potent (IC50 4 μM) than its parental compound. Furthermore, 4EpDN inhibited the Yersinia Ysa and the Salmonella SPI-1 T3SSs, suggesting that this cyclic peptomer has broad efficacy against evolutionarily distant injectisome T3SSs. Indeed, 4EpDN strongly inhibited intracellular growth of Chlamydia trachomatis in HeLa cells, which requires the T3SS. 4EpDN did not inhibit the unrelated Twin arginine translocation (Tat) system, nor did it impact T3SS gene transcription. Moreover, although the injectisome and flagellar T3SSs are evolutionarily and structurally related, the 4EpDN cyclic peptomer did not inhibit secretion of substrates through the Salmonella flagellar T3SS, indicating that cyclic peptomers broadly but specifically target the injestisome T3SS. 4EpDN reduced the number of T3SS basal bodies detected on the surface of Y. enterocolitica, as visualized using a fluorescent derivative of YscD, an inner membrane ring with low homology to flagellar protein FliG. Collectively, these data suggest that cyclic peptomers specifically inhibit the injectisome T3SS from a variety of Gram-negative bacteria, possibly by preventing complete T3SS assembly.IMPORTANCETraditional antibiotics target both pathogenic and commensal bacteria, resulting in a disruption of the microbiota, which in turn is tied to a number of acute and chronic diseases. The bacterial type III secretion system (T3SS) is an appendage used by many bacterial pathogens to establish infection, but is largely absent from commensal members of the microbiota. In this study, we identify a new derivative of the cyclic peptomer class of T3SS inhibitors. These compounds inhibit the T3SS of the nosocomial ESKAPE pathogen Pseudomonas aeruginosa and enteropathogenic Yersinia and Salmonella. The impact of cyclic peptomers is specific to the T3SS, as other bacterial secretory systems are unaffected. Importantly, cyclic peptomers completely block replication of Chlamydia trachomatis, the causative agent of genital, eye, and lung infections, in human cells, a process that requires the T3SS. Therefore, cyclic peptomers represent promising virulence blockers that can specifically disarm a broad spectrum of Gram-negative pathogens.


2008 ◽  
Vol 278 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Masami Miyake ◽  
Sadatsugu Sakane ◽  
Chiho Kobayashi ◽  
Miyuki Hanajima-Ozawa ◽  
Aya Fukui ◽  
...  

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Andrea Nans ◽  
Mikhail Kudryashev ◽  
Helen R. Saibil ◽  
Richard D. Hayward

Sign in / Sign up

Export Citation Format

Share Document