protein delivery
Recently Published Documents


TOTAL DOCUMENTS

1126
(FIVE YEARS 297)

H-INDEX

84
(FIVE YEARS 15)

2022 ◽  
pp. 2102329
Author(s):  
Ning Liu ◽  
Lianghan Zhu ◽  
Honghao Sun ◽  
Zhanwei Zhou ◽  
Jingwen Dong ◽  
...  

2022 ◽  
Author(s):  
Rachel Kapelner ◽  
Allie Obermeyer

Proteins are an important class of biologics, but there are several recurring challenges to address when designing protein-based therapeutics. These challenges include: the propensity of proteins to aggregate during formulation, relatively low loading in traditional hydrophobic delivery vehicles, and inefficient cellular uptake. This last criterion is particularly challenging for anionic proteins as they cannot cross the anionic plasma membrane. Here we investigated the complex coacervation of anionic proteins with a block copolymer of opposite charge to form polyelectrolyte complex (PEC) micelles for use as a protein delivery vehicle. Using genetically modified variants of the model protein green fluorescent protein (GFP), we evaluated the role of protein charge and charge localization in the formation and stability of PEC micelles. A neutral-cationic block copolymer, POEGMA79-b-qP4VP175, was prepared via RAFT polymerization for complexation and microphase separation with the panel of engineered anionic GFPs. We found that isotropically supercharged proteins formed micelles at higher ionic strength relative to protein variants with charge localized to a polypeptide tag. We then studied GFP delivery by PEC micelles and found that they effectively delivered the protein cargo to mammalian cells. However, cellular delivery varied as a function of protein charge and charge distribution and we found an inverse relationship between the PEC micelle critical salt concentration and delivery efficiency. This model system has highlighted the potential of polyelectrolyte-complexes to deliver anionic proteins intracellularly as well as the importance of correlating solution structure and desired functional activity.


2022 ◽  
Author(s):  
Daniel William Watkins ◽  
Ian Collinson

As the first line of defence against antibiotics, the Gram-negative bacterial envelope and its biogenesis are of considerable interest to the microbiological and biomedical communities. All bacterial proteins are synthesised in the cytosol, so inner- and outer-membrane proteins, and periplasmic residents have to be transported to their final destinations via specialised protein machinery. The Sec translocon, a ubiquitous integral inner-membrane (IM) complex, is key to this process as the major gateway for protein transit from the cytosol to the cell envelope; this can be achieved during their translation, or afterwards. Proteins need to be directed to the inner-membrane (usually co-translational), otherwise SecA utilises ATP and the proton-motive-force (PMF) to drive proteins across the membrane post-translationally. These proteins are then picked up by chaperones for folding in the periplasm or delivered to the β-barrel assembly machinery (BAM) for incorporation into the outer-membrane. The core heterotrimeric SecYEG-complex forms the hub for an extensive network of interactions that regulate protein delivery and quality control. Here, we conduct a biochemical exploration of this secretosome: a very large, versatile and inter-changeable assembly with the Sec-translocon at its core; featuring interactions that facilitate secretion (SecDF), inner- and outer-membrane protein insertion (respectively, YidC and BAM), protein folding and quality control (e.g. PpiD, YfgM and FtsH). We propose the dynamic interplay amongst these and other factors act to ensure efficient whole envelope biogenesis, regulated to accommodate the requirements of cell elongation and division. This organisation would be essential for cell wall biogenesis and remodelling and thus its perturbation would be a good strategy for the development of anti-microbials.


2021 ◽  
Vol 23 (4) ◽  
pp. 386-393
Author(s):  
Tejaswini Arunachala Murthy ◽  
◽  
Rinaldo Bellomo ◽  
Marianne Chapman ◽  
Adam Deane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document