Experimental study on the whole‐life heterogeneous ratchetting and ratchetting‐fatigue interaction of SUS301L stainless steel butt‐welded joint

2019 ◽  
Vol 43 (1) ◽  
pp. 36-50 ◽  
Author(s):  
Huiliang Luo ◽  
Guozheng Kang ◽  
Qianhua Kan ◽  
Chuanping Ma



Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1537
Author(s):  
Beata Skowrońska ◽  
Tomasz Chmielewski ◽  
Mariusz Kulczyk ◽  
Jacek Skiba ◽  
Sylwia Przybysz

The paper presents the microstructural investigation of a friction-welded joint made of 316L stainless steel with an ultrafine-grained structure obtained by hydrostatic extrusion (HE). Such a plastically deformed material is characterized by a metastable state of energy equilibrium, increasing, among others, its sensitivity to high temperatures. This feature makes it difficult to weld ultra-fine-grained metals without losing their high mechanical properties. The use of high-speed friction welding and a friction time of <1 s reduced the scale of the weakening of the friction joint in relation to result obtained in conventional rotary friction welding. The study of changes in the microstructure of individual zones of the friction joint was carried out on an optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and electron backscattered diffraction (EBSD) analysis system. The correlation between the microstructure and hardness of the friction joint is also presented. The heat released during the high-speed friction welding initiated the process of dynamic recrystallization (DRX) of single grains in the heat-affected zone (HAZ). The additional occurrence of strong plastic deformations (in HAZ) during flash formation and internal friction (in the friction weld and high-temperature HAZ) contributed to the formation of a highly deformed microstructure with numerous sub-grains. The zones with a microstructure other than the base material were characterized by lower hardness. Due to the complexity of the microstructure and its multifactorial impact on the properties of the friction-welded joint, strength should be the criterion for assessing the properties of the joint.



Author(s):  
Jovanka Kovačina ◽  
Bore Jegdić ◽  
Bojana Radojković ◽  
Dunja Marunkić ◽  
Sanja Stevanović ◽  
...  


2009 ◽  
Vol 83-86 ◽  
pp. 1251-1253 ◽  
Author(s):  
E.G. Grigoryev ◽  
V.N. Bazanov

The purpose of the work was to determine the capabilities of the pulse effect of electric current and pressure to produce welded joints of various component parts of different thickness from 18-10 stainless steel and titanium. Application of electric current pulses on the surfaces of contacting metallic conductors leads to considerable changes in the surface structure. Depending on the initial state of the surfaces and parameters of the pulse effect this can result in melting without formation of joints, formation of a strong welded joint with characteristics no worse than those of welded metals, and in destruction of the contact zone. A combination of a short electric pulse with simultaneous application of mechanical pressure in the weld zone causes high-speed deformation of the contact zone. The process of joint formation itself does not cause any appreciable diffusion during welding. The greatest energy emission and the maximal heating occur on the contacting surfaces being welded with the passage of an electric current pulse through the welding zone. Simultaneously with intensive heating, and due to applied pressure, high-speed deformation of materials takes place and a strong welded joint is formed. Optimal parameters for the welding of titanium and 18-10 stainless steel have been determined on the basis of the tests conducted. Investigations into the welding of titanium and 18-10 stainless steel have shown that application of a short electric current pulse and pressure produces stronger welded joints composed of both similar and different metals of considerably different thickness.



Author(s):  
Qingfang Zhang ◽  
Jianping Tan ◽  
Zhen Li ◽  
Yong Xiang


1996 ◽  
Vol 46 (10) ◽  
pp. 500-504 ◽  
Author(s):  
Hiizu OCHI ◽  
Koichi OGAWA ◽  
Yoshiaki YAMAMOTO ◽  
Shigeki HASHINAGA ◽  
Yasuo SUGA ◽  
...  


1995 ◽  
Vol 13 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Junichi KINUGAWA ◽  
Masayoshi YAMAZAKI ◽  
Hiromichi HONGO ◽  
Takashi WATANABE ◽  
Yoshio MONMA


Sign in / Sign up

Export Citation Format

Share Document