current pulse
Recently Published Documents


TOTAL DOCUMENTS

871
(FIVE YEARS 143)

H-INDEX

39
(FIVE YEARS 5)

Author(s):  
Nikolay D. Kuzmichev ◽  
Ekaterina V. Danilova ◽  
Mikhael A. Vasyutin

A numerical calculation of the evolution of the temperature distribution in the longitudinal section of a niobium nitride membrane when it is heated by an electric current pulse is performed. Mathematical modeling was carried out on the basis of a two-dimensional initial-boundary value problem for an inhomogeneous heat equation. In the initial boundary value problem, it was taken into account that current and potential contacts to the membrane serve simultaneously as contacts for heat removal. The case was considered for the third from the left and the first from the right initial-boundary value problem. Analysis of the numerical solution showed that effective heat removal from the membrane can be provided by current-carrying and potential clamping contacts made, for example, of beryllium bronze. This makes it possible to study the current-voltage characteristics of superconducting membranes near the critical temperature of the transition to the superconducting state by currents close to the critical density without significant heating.


2021 ◽  
Author(s):  
Katerina Mouralova ◽  
Josef Bednar ◽  
Libor Benes ◽  
Ales Polzer ◽  
Radim Zahradnicek ◽  
...  

Abstract The basic building block of any electric discharge machine is a generator, which ensures the operation of material separation itself. Not only the erosion rate and electricity consumption but also the quality of the machined surfaces depend on the design of the generator. These key factors for efficient machining have been investigated using a new energy-saving and powerful generator developed for the electric discharge machine (EDM) while machining 1.2363 and 1.2343ESR steels. In order to monitor and model the responses in the form of eroding rate and surface quality, a two-level half-factor experiment was performed with one replication at the corner points and two replications at the central points, for a total of 80 rounds. Both graphite and copper electrodes of sizes 10x10 mm and 100x100 mm were used for eroding and the influence of parameter settings: Open-voltage, Pulse current, Pulse on-time and Pulse off-time was monitored. It was found out that the shape of the electrode and Pulse current have the most significant effect on the erosion rate. The parameters Pulse current, Pulse on-time and their mutual interaction have the most significant effect on the surface topography. Statistically significant factors influencing the occurrence of defects turned out to be Pulse current, Pulse on-time and Material of workpiece, where it can be seen that the material 1.2343ESR is significantly less prone to the formation of surface defects.


2021 ◽  
Vol 2132 (1) ◽  
pp. 012023
Author(s):  
Zhang Qin ◽  
ZhangJian Qin ◽  
JingLong Zhang ◽  
XinTe Qi

Abstract The charge pulse generated by semiconductor detector caused by nuclear event carries nuclide and nuclear reaction information, but the amplified charge pulse amplitude is obviously weak and the noise is so large. Aiming at the difficulty of obtaining the charge signal pulse generated by the detector, a method for recovering the nuclear pulse current signal of semiconductor detector is proposed. Pulse recovery is divided into two parts: pulse shape recovery and pulse amplitude recovery. Point at the pulse shape, a shape recognition network of nuclear pulse current signal based on deep learning is proposed. For pulse amplitude,it can be obtained by Mexican straw hat wavelet forming algorithm. This algorithm can eliminate the baseline fluctuation caused by pulse stacking. The proposed shape recognition network of nuclear pulse current signal is composed of classifier and regressor. The classifier is used to judge whether the data contains a complete rising edge. The data containing the complete rising edge is sent to the regressor for prediction, so as to obtain the parameters related to the current pulse shape. The precision, recall and F-Measure of the classifier in classifying the test set are 98.88%, 98.05% and 98.33%, respectively. The average absolute error of the regressor in predicting the parameters related to the current pulse shape is about 9 ns. The experimental results show that the proposed method can recover the shape and amplitude of the current signal.


2021 ◽  
Vol 6 (166) ◽  
pp. 151-155
Author(s):  
Ya. Kozak

For fire detectors with a thermoresistive sensing element, a mathematical description of the reaction to the thermal action of an electric current pulse flowing through such a sensing element and having the shape of a right triangle is obtained. The mathematical description is constructed using the Laplace integral transformation and is shown to be a superposition of two Heaviside functions. The parameters of these functions are determined by the transmission coefficient and time constant of the thermoresistive sensitive element of the fire detector and the amplitude and duration of the electric current pulse. It is shown that the ratio of the output signals of the thermoresistive sensitive element of the fire detector at two a priori given moments of time can be used to determine the time parameter of the fire detector. The values ​​of a priori set moments of time, in which the temperature of the thermoresistive sensitive element of the fire detector is determined, are selected under the condition of simplicity of technical implementation. If there is a change in ambient temperature, it leads to a temperature error as a function of the time parameter of the fire detector. For such an error, a mathematical description is obtained in the general case, as well as for the case when the thermal influence on the thermoresistive sensitive element of the fire detector is due to the flow of an electric current pulse in the form of a right triangle. It is shown that the value of the temperature error has a minimum at the values ​​of the ratio of the output signals of the thermoresistive sensitive element of the fire detector at two a priori time points belonging to the range The value of this error does not exceed 4.9% with variations in ambient temperature, the value of which does not exceed 2.0%.


Author(s):  
O. V. Chernyshova ◽  
T. B. Yelemessov ◽  
D. V. Drobot

Objectives. To identify the regularities of electrochemical processing of the heat-resistant GS32-VI alloy in a sulfuric acid electrolyte with a concentration of 100 g/dm3 under the action of a pulsed current in a pulsed mode.Methods. Using the electrochemical technological complex EHK-1012 (developed by IP Tetran) and a non-compensatory method of measuring potential, polarization and depolarization curves with a change in pulse duration and a pause between them were recorded. The current pulses had an amplitude ranging from 0 to 3.5 A (when recording the polarization and depolarization curves), pulse durations ranging from 200 to 1200 ms, and a pause (delay) between pulses ranging from 50 to 500 ms. There were no reverse current pulses.Results. The parameters of the current program that provide the maximum values of the alloy dissolution rate and current output were determined: with a current pulse amplitude of 2 A, a current pulse duration of 500 ms, and a pause duration between pulses of 250 ms, the maximum dissolution rate of the alloy is 0.048 g/h·cm2, while the current output for nickel is 61.6% with an anode area of 10 cm2. The basic technological scheme for processing the heat-resistant GS32-VI alloy, which includes anodic alloy dissolution in a pulsed mode, is proposed.Conclusions. Electrochemical dissolution of GS32-VI alloy under pulsed current action results in an optimal dissolution rate ratio of the alloy components, ensuring the production of a cathode precipitate with a total nickel and cobalt content of 97.5%.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012031
Author(s):  
D A Sorokin ◽  
M I Lomaev ◽  
A V Dyatlov ◽  
V F Tarasenko

Abstract The study of the time behavior of a current pulse of an electron beam generated during a high-voltage nanosecond discharge in gas-filled and vacuum diodes has been carried out. As follows from the experimental results, in both cases, the distribution of the beam current density in the plane of a grounded anode is non-uniform. The highest beam current density is recorded in the axial part of the anode. It was established that in the case of a gas-filled diode, ~ 2 ns after the onset of the beam current pulse, its shape in the axial anode zone changes relative to that in the peripheral one. It is assumed that the most probable reason for this is the effect of compensation of the charge of the beam electrons by the positive charge of ions arising in the ionization process in the paraxial zone.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012066
Author(s):  
V I Shin ◽  
P V Moskvin ◽  
M S Vorobyov ◽  
V N Devyatkov ◽  
N N Koval

Abstract The article presents the results of studies devoted to the study of the energy density distribution in the amplitude-modulated regime of electron beam generation. It is shown that in the first ≈ 50 μs of the duration of the beam current pulse, its spatial rearrangement occurs, due to the development of the arc discharge current. Thus, the rearrangement of the arc current, which develops from the axis of the system, leads to an axial diving of the emission current density and the beam current density on the target. With the development of the arc current, the energy density on the target on the axis of the system decreases and after ≈ 50 μs takes on a steady-state value, which can change only as a result of a change in the conditions for generating an electron beam or the transition to a modulated regime of electron beam generation. It has been experimentally shown using calorimetric measurements that the shape of the electron beam current pulse with its amplitude modulation with a pulse duration of more than 100 μs has little effect on the distribution of the beam energy density in the target region.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012087
Author(s):  
S A Fefelov ◽  
L P Kazakova ◽  
N A Bogoslovskiy ◽  
A O Yakubov ◽  
A B Bylev

Abstract The current-voltage characteristics of Ge2Sb2Te5 thin films were measured by a sequence of triangular current pulses with an increasing maximum current. Each current pulse forms in the sample a conducting filament with an area proportional to the maximum current in the recording pulse.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012063
Author(s):  
A S Shepelev ◽  
V K Eremin ◽  
E M Verbitskaya

Abstract The study is devoted to the treatment of in situ radiation tests results for silicon p-i-n detectors of relativistic protons, which showed the two-stage process of charge transport with avalanche multiplication at a temperature of 1.9 K. The goal of the work is to extract the carrier transport parameters from the experimental data obtained by transient current technique. For that, the impact of a spatial nonuniformity of carrier generation by the laser and spreading of the drifting carrier cloud due to diffusion on the current pulse response formation were considered. The mathematical procedure proposed for the current pulse simulation showed a key contribution of avalanche multiplication in the signal formation and allowed direct estimation of the multiplication factor from the experimental pulses. It is found that this factor only slightly depends on the bias voltage, which suggests the electric field inside the detector to be affected by the space-charge-limited current.


Sign in / Sign up

Export Citation Format

Share Document