scholarly journals Life stage, not climate change, explains observed tree range shifts

2016 ◽  
Vol 22 (5) ◽  
pp. 1904-1914 ◽  
Author(s):  
František Máliš ◽  
Martin Kopecký ◽  
Petr Petřík ◽  
Jozef Vladovič ◽  
Ján Merganič ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dennis Rödder ◽  
Thomas Schmitt ◽  
Patrick Gros ◽  
Werner Ulrich ◽  
Jan Christian Habel

AbstractClimate change impacts biodiversity and is driving range shifts of species and populations across the globe. To understand the effects of climate warming on biota, long-term observations of the occurrence of species and detailed knowledge on their ecology and life-history is crucial. Mountain species particularly suffer under climate warming and often respond to environmental changes by altitudinal range shifts. We assessed long-term distribution trends of mountain butterflies across the eastern Alps and calculated species’ specific annual range shifts based on field observations and species distribution models, counterbalancing the potential drawbacks of both approaches. We also compiled details on the ecology, behaviour and life-history, and the climate niche of each species assessed. We found that the highest altitudinal maxima were observed recently in the majority of cases, while the lowest altitudes of observations were recorded before 1980. Mobile and generalist species with a broad ecological amplitude tended to move uphill more than specialist and sedentary species. As main drivers we identified climatic conditions and topographic variables, such as insolation and solar irradiation. This study provides important evidence for responses of high mountain taxa to rapid climate change. Our study underlines the advantage of combining historical surveys and museum collection data with cutting-edge analyses.


Bothalia ◽  
2008 ◽  
Vol 38 (2) ◽  
Author(s):  
L. Agenbag ◽  
K. J. Elser ◽  
G. F. Midgley ◽  
C. Boucher

A temperature and moisture gradient on the equator-facing slope of Jonaskop on the Riviersonderend Mountain. Westem Cape has been selected as an important gradient for monitoring the effects of climate change on fynbos and the Fynbos- Succulent Karoo ecotone. This study provides a description of plant diversity patterns, growth form composition and species turnover across the gradient and the results of four years of climate monitoring at selected points along the altitudinal gradient.The aim o f this study is to provide data for a focused monitoring strategy for the early detection of climate change-related shifts in species’ ranges, as well as gaining a better understanding of the role of climate variability in shaping species growth responses, their distributions, and other ecosystem processes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Avery P. Hill ◽  
Christopher B. Field

AbstractDue to climate change, plant populations experience environmental conditions to which they are not adapted. Our understanding of the next century’s vegetation geography depends on the distance, direction, and rate at which plant distributions shift in response to a changing climate. In this study we test the sensitivity of tree range shifts (measured as the difference between seedling and mature tree ranges in climate space) to wildfire occurrence, using 74,069 Forest Inventory Analysis plots across nine states in the western United States. Wildfire significantly increased the seedling-only range displacement for 2 of the 8 tree species in which seedling-only plots were displaced from tree-plus-seedling plots in the same direction with and without recent fire. The direction of climatic displacement was consistent with that expected for warmer and drier conditions. The greater seedling-only range displacement observed across burned plots suggests that fire can accelerate climate-related range shifts and that fire and fire management will play a role in the rate of vegetation redistribution in response to climate change.


2015 ◽  
Vol 61 (4) ◽  
pp. 641-652 ◽  
Author(s):  
Marie E. Delorenzo

Abstract Global climate change effects will vary geographically, and effects on estuaries should be independently considered. This review of the impacts of climate change on the ecotoxicology of chemical contaminants aims to summarize responses that are specific to estuarine species. Estuarine organisms are uniquely adapted to large fluctuations in temperature, salinity, oxygen, and pH, and yet future changes in climate may make them more susceptible to chemical contaminants. Recent research has highlighted the interactive effects of chemical and nonchemical stressors on chemical uptake, metabolism, and organism survival. Assessments have revealed that the nature of the interaction between climate variables and chemical pollution will depend on estuarine species and life stage, duration and timing of exposure, prior stressor exposure, and contaminant class. A need for further research to elucidate mechanisms of toxicity under different abiotic conditions and to incorporate climate change factors into toxicity testing was identified. These efforts will improve environmental risk assessment of chemical contaminants and management capabilities under changing climate conditions.


2019 ◽  
Vol 26 (3) ◽  
pp. 352-367 ◽  
Author(s):  
Ziyan Liao ◽  
Lin Zhang ◽  
Michael P. Nobis ◽  
Xiaogang Wu ◽  
Kaiwen Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document