scholarly journals Climate change and fire effects on a prairie–woodland ecotone: projecting species range shifts with a dynamic global vegetation model

2013 ◽  
Vol 3 (15) ◽  
pp. 5076-5097 ◽  
Author(s):  
David A. King ◽  
Dominique M. Bachelet ◽  
Amy J. Symstad
2018 ◽  
Vol 10 ◽  
pp. 20-32 ◽  
Author(s):  
John B. Kim ◽  
Becky K. Kerns ◽  
Raymond J. Drapek ◽  
G. Stephen Pitts ◽  
Jessica E. Halofsky

2017 ◽  
Author(s):  
Sibyll Schaphoff ◽  
Werner von Bloh ◽  
Anja Rammig ◽  
Kirsten Thonicke ◽  
Hester Biemans ◽  
...  

Abstract. This paper provides a comprehensive description of the newest version of the Dynamic Global Vegetation Model with managed Land, LPJmL4. This model simulates – internally consistently – the growth and productivity of both natural and agricultural vegetation in direct coupling with water and carbon fluxes. These features render LPJmL4 suitable for assessing a broad range of feedbacks within, and impacts upon, the terrestrial biosphere as increasingly shaped by human activities such as climate change and land-use change. Here we describe the core model structure including recently developed modules now unified in LPJmL4. Thereby we also summarize LPJmL model developments and evaluations (based on 34 earlier publications focused e.g. on improved representations of crop types, human and ecological water demand, and permafrost) and model applications (82 papers, e.g. on historical and future climate change impacts) since its first description in 2007. To demonstrate the main features of the LPJmL4 model, we display reference simulation results for key processes such as the current global distribution of natural and managed ecosystems, their productivities, and associated water fluxes. A thorough evaluation of the model is provided in a companion paper. By making the model source code freely available at a Gitlab server, we hope to stimulate the application and further development of LPJmL4 across scientific communities, not least in support of major activities such as the IPCC and SDG process.


2014 ◽  
Vol 294 ◽  
pp. 84-93 ◽  
Author(s):  
Wendy Peterman ◽  
Dominique Bachelet ◽  
Ken Ferschweiler ◽  
Timothy Sheehan

2013 ◽  
Vol 10 (6) ◽  
pp. 4137-4177 ◽  
Author(s):  
R. Pavlick ◽  
D. T. Drewry ◽  
K. Bohn ◽  
B. Reu ◽  
A. Kleidon

Abstract. Terrestrial biosphere models typically abstract the immense diversity of vegetation forms and functioning into a relatively small set of predefined semi-empirical plant functional types (PFTs). There is growing evidence, however, from the field ecology community as well as from modelling studies that current PFT schemes may not adequately represent the observed variations in plant functional traits and their effect on ecosystem functioning. In this paper, we introduce the Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM) as a new approach to terrestrial biosphere modelling with a richer representation of functional diversity than traditional modelling approaches based on a small number of fixed PFTs. JeDi-DGVM simulates the performance of a large number of randomly generated plant growth strategies, each defined by a set of 15 trait parameters which characterize various aspects of plant functioning including carbon allocation, ecophysiology and phenology. Each trait parameter is involved in one or more functional trade-offs. These trade-offs ultimately determine whether a strategy is able to survive under the climatic conditions in a given model grid cell and its performance relative to the other strategies. The biogeochemical fluxes and land surface properties of the individual strategies are aggregated to the grid-cell scale using a mass-based weighting scheme. We evaluate the simulated global biogeochemical patterns against a variety of field and satellite-based observations following a protocol established by the Carbon-Land Model Intercomparison Project. The land surface fluxes and vegetation structural properties are reasonably well simulated by JeDi-DGVM, and compare favourably with other state-of-the-art global vegetation models. We also evaluate the simulated patterns of functional diversity and the sensitivity of the JeDi-DGVM modelling approach to the number of sampled strategies. Altogether, the results demonstrate the parsimonious and flexible nature of a functional trade-off approach to global vegetation modelling, i.e. it can provide more types of testable outputs than standard PFT-based approaches and with fewer inputs. The approach implemented here in JeDi-DGVM sets the foundation for future applications that will explore the impacts of explicitly resolving diverse plant communities, allowing for a more flexible temporal and spatial representation of the structure and function of the terrestrial biosphere.


Author(s):  
Joshua S. Halofsky ◽  
Jessica E. Halofsky ◽  
David R. Conklin ◽  
Dominique Bachelet ◽  
Miles A. Hemstrom ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document