scholarly journals Enhancements to a Geographically Weighted Principal Component Analysis in the Context of an Application to an Environmental Data Set

2014 ◽  
Vol 47 (2) ◽  
pp. 146-172 ◽  
Author(s):  
Paul Harris ◽  
Annemarie Clarke ◽  
Steve Juggins ◽  
Chris Brunsdon ◽  
Martin Charlton
2016 ◽  
Vol 35 (2) ◽  
pp. 173-190 ◽  
Author(s):  
S. Shahid Shaukat ◽  
Toqeer Ahmed Rao ◽  
Moazzam A. Khan

AbstractIn this study, we used bootstrap simulation of a real data set to investigate the impact of sample size (N = 20, 30, 40 and 50) on the eigenvalues and eigenvectors resulting from principal component analysis (PCA). For each sample size, 100 bootstrap samples were drawn from environmental data matrix pertaining to water quality variables (p = 22) of a small data set comprising of 55 samples (stations from where water samples were collected). Because in ecology and environmental sciences the data sets are invariably small owing to high cost of collection and analysis of samples, we restricted our study to relatively small sample sizes. We focused attention on comparison of first 6 eigenvectors and first 10 eigenvalues. Data sets were compared using agglomerative cluster analysis using Ward’s method that does not require any stringent distributional assumptions.


2017 ◽  
Vol 727 ◽  
pp. 447-449 ◽  
Author(s):  
Jun Dai ◽  
Hua Yan ◽  
Jian Jian Yang ◽  
Jun Jun Guo

To evaluate the aging behavior of high density polyethylene (HDPE) under an artificial accelerated environment, principal component analysis (PCA) was used to establish a non-dimensional expression Z from a data set of multiple degradation parameters of HDPE. In this study, HDPE samples were exposed to the accelerated thermal oxidative environment for different time intervals up to 64 days. The results showed that the combined evaluating parameter Z was characterized by three-stage changes. The combined evaluating parameter Z increased quickly in the first 16 days of exposure and then leveled off. After 40 days, it began to increase again. Among the 10 degradation parameters, branching degree, carbonyl index and hydroxyl index are strongly associated. The tensile modulus is highly correlated with the impact strength. The tensile strength, tensile modulus and impact strength are negatively correlated with the crystallinity.


2012 ◽  
Vol 622-623 ◽  
pp. 45-50 ◽  
Author(s):  
Joydeep Roy ◽  
Bishop D. Barma ◽  
J. Deb Barma ◽  
S.C. Saha

In submerged arc welding (SAW), weld quality is greatly affected by the weld parameters such as welding current, traverse speed, arc voltage and stickout since they are closely related to weld joint. The joint quality can be defined in terms of properties such as weld bead geometry and mechanical properties. There are several control parameters which directly or indirectly affect the response parameters. In the present study, an attempt has been made to search an optimal parametric combination, capable of producing desired high quality joint in submerged arc weldment by Taguchi method coupled with weighted principal component analysis. In the present investigation three process variables viz. Wire feed rate (Wf), stick out (So) and traverse speed (Tr) have been considered and the response parameters are hardness, tensile strength (Ts), toughness (IS).


Sign in / Sign up

Export Citation Format

Share Document