tensile modulus
Recently Published Documents


TOTAL DOCUMENTS

1100
(FIVE YEARS 394)

H-INDEX

36
(FIVE YEARS 8)

2022 ◽  
Vol 12 (2) ◽  
pp. 713
Author(s):  
Esther Nneka Anosike-Francis ◽  
Paschal Ateb Ubi ◽  
Ifeyinwa Ijeoma Obianyo ◽  
Godwin Mong Kalu-Uka ◽  
Abdulhakeem Bello ◽  
...  

This study investigates the feasibility of creating a clay polymer-based composite using cowpea husk (CPH) as filler for production of roof tiles. Polymeric composites were fabricated by mixing unsaturated polyester (UPT) resin with cowpea husk at different filler weights and curing. A hybrid composite was produced with the addition of 3 wt.% clay and all samples produced were subjected to flexural, hardness and dynamic mechanical analysis (DMA) tests. The effect of clay addition on the mechanical and thermo-mechanical behaviour of formulated composites was investigated. The morphological analysis of the mono and hybrid system shows a rough and coarse inhomogeneous surface with voids created due to the addition of CPH filler for the mono reinforced and clay uniformly filling the voids that were created by the CPH in the hybrid composite. It is observed that hardness, tensile modulus and flexural modulus of hybrid composites increase with an increase in the CPH contents, while the strength and flexural strength all decrease with filler content. The optimal composition was obtained using Grey relational analysis (GRA) at 18% CPH for both mono and hybrid composite. The results imply that the composite combination can be used in making rooftiles and/or also in applications where low strength is required.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 257
Author(s):  
Wen He ◽  
Rui Wang ◽  
Feiyu Guo ◽  
Jizhou Cao ◽  
Zhihao Guo ◽  
...  

There has been growing interest in transparent conductive substrates due to the prevailing flexible electron devices and the need for sustainable resources. In this study, we demonstrated a transparent fast-growing poplar veneers prepared by acetylated modification, followed by the infiltration of epoxy resin. The work mainly focused on the effect of acetylation treatment using a green catalyst of 4-Dimethylpyridine on the interface of the bulk fast-growing poplar veneer, and the result indicated that the interface hydrophobicity was greatly enhanced due to the higher substitute of acetyl groups; therefore, the interface compatibility between the cell wall and epoxy resin was improved. The obtained transparent fast-growing poplar veneers, hereafter referred to as TADPV, displayed a superior optical performance and flexibility, in which the light transmittance and haze were 90% and 70% at a wavelength of 550 nm, respectively, and the bending radius and bending angle parallel to grain of TADPV were 2 mm and 130°, respectively. Moreover, the tensile strength and tensile modulus of the TADPV were around 102 MPa and 198 MPa, respectively, which is significantly better than those of the plastic substrates used in flexible electron devices. At the same time, the thermal conductivity tests indicated that TADPV has a low coefficient of thermal conductivity of 0.34 Wm−1 K−1, which can completely meet the needs of transparent conductive substrates. Therefore, the obtained TADPV can be used as a candidate for a flexible transparent substrate of electron devices.


2022 ◽  
Vol 58 (4) ◽  
pp. 171-178
Author(s):  
Elangovan Kasi ◽  
Mohan Ramakrishnan

The usage of seals in several applications like aircraft engines is mostly made of Fluorocarbon (FKM) elastomer. They are coloured products that enable easier identification based on the applications. In such seals, fillers like carbon black cannot be added to reinforce and improvise the mechanical properties since carbon black does not make it possible to add colours. The properties after ageing are also very critical in sealing application, and they must also be improved. Also, Nanocomposites are the modern and growing trends in the field of polymers that show enormous changes in the properties of the polymers without affecting their basic properties. So, the need for improvisation of FKM seals and the concept of Nanocomposites can be merged to form FKM Nanocomposites with Nano clay and Nano silica as the fillers. The objective of this project is to improve the mechanical properties, better retention of properties after ageing and after fluid interaction of the FKM seals with the aid of Nanofillers. Different proportions of FKM nanocomposites were prepared using modified Nano Kaolin Clay & modified Montmorillonite clay (Cloisite grades). Various mechanical properties like tensile strength, tensile modulus, elongation at break, compression set and tear strength etc., were studied. The test results have shown good improvements while increasing the filler loading. This is helpful to manufacture seals of desired colours thereby avoiding the difficulties faced in the carbon black-filled FKM compounds.


Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 26
Author(s):  
Rui Zhou ◽  
Weicheng Gao ◽  
Wei Liu ◽  
Jianxun Xu

With advantages in efficiency and convenience, analytical models using experimental inputs to predict the mechanical properties of plain-woven fabric (PWF) composites are reliable in guaranteeing the composites’ engineering applications. Considering the importance of the aspect above, a new analytical model for predicting the uniaxial tensile modulus of PWF is proposed in this article. The composite yarns are first simplified as the lenticular-shaped cross-sections undulate along arc-composed paths. Force analyses of the yarn segments are then carried out with the internal interactions simplified, and the analytical model is subsequently deduced from the principle of minimum potential energy and Castigliano’s second theorem. The PWF of T300/Cycom970 is chosen as the study object to which the proposed analytical model is applied. Microscopic observations and thermal ablation experiments are conducted on the specimens to obtain the necessary inputs. The uniaxial tensile modulus is calculated and tensile experiments on the laminates are performed to validate the analytical prediction. The small deviation between the experimental and analytical results indicates the feasibility of the proposed analytical model, which has good prospects in validating the effectiveness of the experimentally obtained modeling parameters and guaranteeing the accuracy of mesoscale modeling for the PWF.


2022 ◽  
pp. 339-353
Author(s):  
Elango Natarajan ◽  
Muhammad Rusydi Muhammad Razif ◽  
AAM Faudzi ◽  
Palanikumar K.

Soft actuators are generally built to achieve extension, contraction, curling, or bending motions needed for robotic or medical applications. It is prepared with a cylindrical tube, braided with fibers that restrict the radial motion and produce the extension, contraction, or bending. The actuation is achieved through the input of compressed air with a different pressure. The stiffness of the materials controls the magnitude of the actuation. In the present study, Silastic-P1 silicone RTV and multi-wall carbon nanotubes (MWCNT) with reinforced silicone are considered for the evaluation. The dumbbell samples are prepared from both materials as per ASTM D412-06a (ISO 37) standard and their corresponding tensile strength, elongation at break, and tensile modulus are measured. The Ogden nonlinear material constants of respective materials are estimated and used further in the finite element analysis of extension, contraction, and bending soft actuators. It is observed that silicone RTV is better in high strain and fast response, whereas, silicone/MWCNT is better at achieving high actuation.


e-Polymers ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 87-98
Author(s):  
Kilole Tesfaye Chaka

Abstract Polypropylene (PP) undergoes fast crystallization and resulting in rigorous shrinkage when it is subjected to high temperature likewise of the fused deposition modeling (FDM) process. This research study focuses on the investigation of the processing parameters and factors that decrease the warpage of PP during the FDM process. Aluminium silicate dihydrate (K) microparticles of different ratios were melt blended with PP by a twin-screw extruder, and filaments of about 1.7 mm diameter were extruded in a single screw extruder. Then, the extruded filaments were used to fabricate the dumbbells structure through the FDM process. The effects of optimizing the fused deposition temperature, coating the chamber with thick papers/fabrics, and coating a printer bed with PP material were also investigated in this study. Scanning and transmission electron microscopy, differential scanning calorimetry, melt flow, and mechanical properties testing instruments are used to analyze the microparticles dispersion, crystallization, flow, and mechanical properties of resulting samples. Uniformly dispersed filler and increased printing chamber temperature result in an increase of crystallization temperature and improve the dimensional accuracy of fused deposited specimens. The fused deposited PP-K10 wt% composite showed an improvement of up to 32% in tensile modulus compared to the neat PP.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 161
Author(s):  
Reza Zeinali ◽  
Luis J. del Valle ◽  
Lourdes Franco ◽  
Ibraheem Yousef ◽  
Jeroen Rintjema ◽  
...  

Different copolymers incorporating terpene oxide units (e.g., limonene oxide) have been evaluated considering thermal properties, degradability, and biocompatibility. Thus, polycarbonates and polyesters derived from aromatic, monocyclic and bicyclic anhydrides have been considered. Furthermore, ring substitution with myrcene terpene has been evaluated. All polymers were amorphous when evaluated directly from synthesis. However, spherulites could be observed after the slow evaporation of diluted chloroform solutions of polylimonene carbonate, with all isopropene units possessing an R configuration. This feature was surprising considering the reported information that suggested only the racemic polymer was able to crystallize. All polymers were thermally stable and showed a dependence of the maximum degradation rate temperature (from 242 °C to 342 °C) with the type of terpene oxide. The graduation of glass transition temperatures (from 44 °C to 172 °C) was also observed, being higher than those corresponding to the unsubstituted polymers. The chain stiffness of the studied polymers hindered both hydrolytic and enzymatic degradation while a higher rate was detected when an oxidative medium was assayed (e.g., weight losses around 12% after 21 days of exposure). All samples were biocompatible according to the adhesion and proliferation tests performed with fibroblast cells. Hydrophobic and mechanically consistent films (i.e., contact angles between 90° and 110°) were obtained after the evaporation of chloroform from the solutions, having different ratios of the studied biobased polyterpenes and poly(butylene succinate) (PBS). The blend films were comparable in tensile modulus and tensile strength with the pure PBS (e.g., values of 330 MPa and 7 MPa were determined for samples incorporating 30 wt.% of poly(PA-LO), the copolyester derived from limonene oxide and phthalic anhydride. Blends were degradable, biocompatible and appropriate to produce oriented-pore and random-pore scaffolds via a thermally-induced phase separation (TIPS) method and using 1,4-dioxane as solvent. The best results were attained with the blend composed of 70 wt.% PBS and 30 wt.% poly(PA-LO). In summary, the studied biobased terpene derivatives showed promising properties to be used in a blended form for biomedical applications such as scaffolds for tissue engineering.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Elena Ruxandra Radu ◽  
Denis Mihaela Panaitescu ◽  
Laura Andrei ◽  
Florin Ciuprina ◽  
Cristian Andi Nicolae ◽  
...  

Polymer nanodielectrics characterized by good flexibility, processability, low dielectric loss and high dielectric permittivity are materials of interest for wearable electronic devices and intelligent textiles, and are highly in demand in robotics. In this study, an easily scalable and environmentally friendly method was applied to obtain polysiloxane/nanosilica nanocomposites with a large content of nanofiller, of up to 30% by weight. Nanosilica was dispersed both as individual particles and as agglomerates; in nanocomposites with a lower amount of filler, the former prevailed, and at over 20 wt% nanosilica the agglomerates predominated. An improvement of both the tensile strength and modulus was observed for nanocomposites with 5–15 wt% nanosilica, and a strong increase of the storage modulus was observed with the increase of nanofiller concentration. Furthermore, an increase of the storage modulus of up to seven times was observed in the nanocomposites with 30 wt% nanosilica. The tensile modulus was well fitted by models that consider the aggregation of nanoparticles and the role of the interface. The dielectric spectra showed an increase of the real part of the complex relative permittivity with 33% for 30 wt% nanosilica in nanocomposites at a frequency of 1 KHz, whereas the loss tangent values were lower than 0.02 for all tested nanodielectrics in the radio frequency range between 1 KHz and 1 MHz. The polysiloxane–nanosilica nanocomposites developed in this work showed good flexibility; however, they also showed increased stiffness along with a stronger dielectric response than the unfilled polysiloxane, which recommends them as dielectric substrates for wearable electronic devices.


Sign in / Sign up

Export Citation Format

Share Document