scholarly journals Biological and Physical Clogging in Infiltration Wells: Effects of Well Diameter and Gravel Pack

Ground Water ◽  
2021 ◽  
Author(s):  
Fritz Kalwa ◽  
Martin Binder ◽  
Falk Händel ◽  
Luzie Grüneberg ◽  
Rudolf Liedl
Keyword(s):  
Author(s):  
Y. Anggoro

The Belida field is an offshore field located in Block B of Indonesia’s South Natuna Sea. This field was discovered in 1989. Both oil and gas bearing reservoirs are present in the Belida field in the Miocene Arang, Udang and Intra Barat Formations. Within the middle Arang Formation, there are three gas pay zones informally referred to as Beta, Gamma and Delta. These sand zones are thin pay zones which need to be carefully planned and economically exploited. Due to the nature of the reservoir, sand production is a challenge and requires downhole sand control. A key challenge for sand control equipment in this application is erosion resistance without inhibiting productivity as high gas rates and associated high flow velocity is expected from the zones, which is known to have caused sand control failure. To help achieve a cost-effective and easily planned deployment solution to produce hydrocarbons, a rigless deployment is the preferred method to deploy downhole sand control. PSD analysis from the reservoir zone suggested from ‘Industry Rules of Thumb’ a conventional gravel pack deployment as a means of downhole sand control. However, based on review of newer globally proven sand control technologies since adoption of these ‘Industry Rules of Thumb’, a cost-effective solution could be considered and implemented utilizing Ceramic Sand Screen technology. This paper will discuss the successful application at Block B, Natuna Sea using Ceramic Sand Screens as a rigless intervention solution addressing the erosion / hot spotting challenges in these high rate production zones. The erosion resistance of the Ceramic Sand Screen design allows a deployment methodology directly adjacent to the perforated interval to resist against premature loss of sand control. The robust ceramic screen design gave the flexibility required to develop a cost-effective lower completion deployment methodology both from a challenging make up in the well due to a restrictive lubricator length to the tractor conveyancing in the well to land out at the desired set depth covering the producing zone. The paper will overview the success of multi-service and product supply co-operation adopting technology enablers to challenge ‘Industry Rules of Thumb’ replaced by rigless reasoning as a standard well intervention downhole sand control solution where Medco E&P Natuna Ltd. (Medco E&P) faces sand control challenges in their high deviation, sidetracked well stock. The paper draws final attention to the hydrocarbon performance gain resulting due to the ability for choke free production to allow drawing down the well at higher rates than initially expected from this zone.


1988 ◽  
Vol 3 (04) ◽  
pp. 536-542
Author(s):  
Alec Sacuta ◽  
D.M. Nguyen ◽  
G.A. Kissel
Keyword(s):  

2015 ◽  
Author(s):  
Mahmoud Asadi ◽  
Brian Ainley ◽  
David Archacki ◽  
Eric Aubry ◽  
Harold Dean Brannon ◽  
...  

2003 ◽  
Author(s):  
Mohamed Zaini B. Md. Noor ◽  
Kasim B. Selamat ◽  
Abdullah B. Kasim ◽  
Sharifudin Salahudin
Keyword(s):  

1997 ◽  
Author(s):  
Stephen P. Mathis ◽  
Sharon B. Malochee
Keyword(s):  

2015 ◽  
Author(s):  
Mahmoud Asadi ◽  
Brain Ainley ◽  
David Archacki ◽  
Eric Aubry ◽  
Harold Brannon ◽  
...  

Abstract Historically, leak-off analyses of stimulation fluids have been performed using in-house laboratory procedures. The lack of industry standard procedures to perform leak-off and wall building coefficient analyses of stimulation fluids has introduced inconsistency in both results and reporting for many years. A technical standard adopted in 2006 by both API and ISO for static conditions has provided the oil and gas industry with the first standardized procedure to measure and report leak-off1. However, the more complex testing under dynamic conditions was not addressed. As a result, a group of industry experts have compiled their years of experiences in developing a new technical standard to measure the leak-off characteristics of stimulation and gravel-pack fluids under dynamic flow conditions. Stimulation and gravel-pack fluids are defined, for the purpose of this technical standard, as fluids used to enhance production from oil and gas wells by fracturing and fluids used to place filtration media to control formation sand production from oil and gas wells. Leak-off is the amount of fluid lost to porous media during these operations. The leak-off procedure was developed through the colaberation of several industry companies by evaluating numerous in-house laboratory techniques and conducting round robin testing to ensure that any modifications to these procedures were reliable and repeatable. The new standard provides a step-by-step procedure that includes fluid preparation, experimental equipment design, testing procedure and data analyses for fluids exhibiting viscosity controlled leak-off or wall building characteristics. Example calculations are reviewed within this paper.


2021 ◽  
Author(s):  
Seng Wei Jong ◽  
Yee Tzen Yong ◽  
Yusri Azizan ◽  
Richard Hampson ◽  
Rudzaifi Adizamri Hj Abd Rani ◽  
...  

Abstract Production decline caused by sand ingress was observed on 2 offshore oil wells in Brunei waters. Both wells were completed with a sub-horizontal openhole gravel pack and were subsequently shut in as the produced sand would likely cause damage to the surface facilities. In an offshore environment with limited workspace, crane capacity and wells with low reservoir pressures, it was decided to intervene the wells using a catenary coiled tubing (CT) vessel. The intervention required was to clean out the sand build up in the wells and install thru-tubing (TT) sand screens along the entire gravel packed screen section. Nitrified clean out was necessary due to low reservoir pressures while using a specialized jetting nozzle to optimize turbulence and lift along the deviated section. In addition, a knockout pot was utilized to filter and accommodate the large quantity of sand returned. The long sections of screens required could not be accommodated inside the PCE stack resulting in the need for the operation to be conducted as an open hole deployment using nippleless plug and fluid weight as well control barrier. A portable modular crane was also installed to assist the deployment of long screen sections prior to RIH with CT. Further challenges that needed to be addressed were the emergency measures. As the operation was to be conducted using the catenary system, the requirement for an emergency disconnect between the vessel and platform during the long cleanout operations and open hole deployment needed to be considered as a necessary contingency. Additional shear seal BOPs, and emergency deployment bars were also prepared to ensure that the operation could be conducted safely and successfully.


Sign in / Sign up

Export Citation Format

Share Document