Stability of Nickel-Coated Sand as Gravel-Pack Material for Thermal Wells

1988 ◽  
Vol 3 (04) ◽  
pp. 536-542
Author(s):  
Alec Sacuta ◽  
D.M. Nguyen ◽  
G.A. Kissel
Keyword(s):  
Author(s):  
Seroor Atalah Khaleefa Alia ◽  
Dr. Mohammed Ibrahimb ◽  
Hussein Ali Hussein

Adsorption is most commonly applied process for the removal of pollutants such as dyes and heavy metals ions from wastewater. The present work talks about preparing graphenic material attached sand grains called graphene sand composite (GSC) by using ordinary sugar as a carbon source. Physical morphology and chemical composition of GSC was examined by using (FTIR, SEM, EDAX and XRD). Efficiency of GSC in the adsorption of organic dyes from water was investigated using reactive green dye with different parameters such as (ph, temperature, contact time and dose). Adsorption isotherm was also studied and the results showed that the maximum adsorption capacity of dye is 28.98 mg/g. This fast, low-cost process can be used to manufacture commercial filters to treat contaminated water using appropriate engineering designs.


Author(s):  
Y. Anggoro

The Belida field is an offshore field located in Block B of Indonesia’s South Natuna Sea. This field was discovered in 1989. Both oil and gas bearing reservoirs are present in the Belida field in the Miocene Arang, Udang and Intra Barat Formations. Within the middle Arang Formation, there are three gas pay zones informally referred to as Beta, Gamma and Delta. These sand zones are thin pay zones which need to be carefully planned and economically exploited. Due to the nature of the reservoir, sand production is a challenge and requires downhole sand control. A key challenge for sand control equipment in this application is erosion resistance without inhibiting productivity as high gas rates and associated high flow velocity is expected from the zones, which is known to have caused sand control failure. To help achieve a cost-effective and easily planned deployment solution to produce hydrocarbons, a rigless deployment is the preferred method to deploy downhole sand control. PSD analysis from the reservoir zone suggested from ‘Industry Rules of Thumb’ a conventional gravel pack deployment as a means of downhole sand control. However, based on review of newer globally proven sand control technologies since adoption of these ‘Industry Rules of Thumb’, a cost-effective solution could be considered and implemented utilizing Ceramic Sand Screen technology. This paper will discuss the successful application at Block B, Natuna Sea using Ceramic Sand Screens as a rigless intervention solution addressing the erosion / hot spotting challenges in these high rate production zones. The erosion resistance of the Ceramic Sand Screen design allows a deployment methodology directly adjacent to the perforated interval to resist against premature loss of sand control. The robust ceramic screen design gave the flexibility required to develop a cost-effective lower completion deployment methodology both from a challenging make up in the well due to a restrictive lubricator length to the tractor conveyancing in the well to land out at the desired set depth covering the producing zone. The paper will overview the success of multi-service and product supply co-operation adopting technology enablers to challenge ‘Industry Rules of Thumb’ replaced by rigless reasoning as a standard well intervention downhole sand control solution where Medco E&P Natuna Ltd. (Medco E&P) faces sand control challenges in their high deviation, sidetracked well stock. The paper draws final attention to the hydrocarbon performance gain resulting due to the ability for choke free production to allow drawing down the well at higher rates than initially expected from this zone.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 335-341 ◽  
Author(s):  
Jae-Kyu Yang ◽  
Yoon-Young Chang ◽  
Sung-Il Lee ◽  
Hyung-Jin Choi ◽  
Seung-Mok Lee

Iron-coated sand (ICS) prepared by using FeCl3 and Joomoonjin sand widely used in Korea was used in this study. In batch adsorption kinetics, As(V) adsorption onto ICS was completed within 20 minutes, while adsorption of Pb(II), Cd(II), and Cu(II) onto ICS was slower than that of As(V) and strongly depended on initial pH. At pH 3.5, ICS showed a selective adsorption of Pb(II) compared to Cd( II) and Cu(II) . However, above pH 4.5, near complete removal of Pb(II), Cd(II), and Cu(II) was observed through adsorption or precipitation depending on pH. As(V) adsorption onto ICS occurred through an anionic-type and followed a Langmuir-type adsorption behaviour. In column experiments, pH was identified as an important parameter in the breakthrough of As(V). As(V) breakthrough at pH 4.5 was much slower than at pH 9 due to a strong chemical bonding between As(V) and ICS as similar with batch adsorption behaviour. With variation of ICS amounts, the optimum amount of ICS at pH 4.5 was identified as 5.0 grams in this research. At this condition, ICS could be used to treat 200 mg of As(V) with 1 kg of ICS until 50 ppb of As(V) appeared in the effluent. In this research, as a new treatment system, ICS can be potentially used to treat As(V) and cationic heavy metals.


2021 ◽  
Vol 413 ◽  
pp. 125410
Author(s):  
Miaomiao Tan ◽  
Longfei Liu ◽  
Minggu Zhang ◽  
Yanli Liu ◽  
Chengliang Li

2020 ◽  
Vol 9 (1) ◽  
pp. 1445-1455
Author(s):  
Song Gao ◽  
Jianlin Luo ◽  
Jigang Zhang ◽  
Fei Teng ◽  
Chao Liu ◽  
...  

Abstract Water and sand were used as the medium of multiwall carbon nanotube (MCNT) and prepared MCNT aqueous suspension and MCNT suspension-coated sand, respectively; afterwards, they were introduced into cement mortar (MNT/CM, MNTSM), respectively. Next, mechanical strengths and piezoresistive properties (DC resistivities (ρ v), AC impedances (Z r)) under cyclic loadings (σ c) of two types of MNT/CM and MNTSM nanocomposites were investigated to explore the intrinsic and self-sensing behaviors. Results reveal that MCNT can be evenly and well-coated on sand, which favors to achieve its intrinsic self-sensing property. Although the fraction changes in ρ v and Z r under the same σ c of MNTSM are both lower than those of MNT/CM, the stress sensitivity of MNTSM is only −1.16%/MPa (DC resistivity), −1.55%/MPa (AC impedance); its sensing linearity and stability (2.53, 2.45%; 2.73, 2.67%) are superior to those of MNT/CM (4.94, 2.57%; 3.78, 2.96%). Piezoresistivity using AC impedance technique is helpful to acquire balanced sensing sensitivity and stability while applied as intrinsic sensors in infrastructure.


Ground Water ◽  
2021 ◽  
Author(s):  
Fritz Kalwa ◽  
Martin Binder ◽  
Falk Händel ◽  
Luzie Grüneberg ◽  
Rudolf Liedl
Keyword(s):  

2016 ◽  
Vol 92 ◽  
pp. 113-120 ◽  
Author(s):  
Michael R. Mitzel ◽  
Stefanie Sand ◽  
Joann K. Whalen ◽  
Nathalie Tufenkji

Sign in / Sign up

Export Citation Format

Share Document