Challenging Catenary Coiled Tubing Thru Tubing Screen Deployment Operation Offshore Borneo

2021 ◽  
Author(s):  
Seng Wei Jong ◽  
Yee Tzen Yong ◽  
Yusri Azizan ◽  
Richard Hampson ◽  
Rudzaifi Adizamri Hj Abd Rani ◽  
...  

Abstract Production decline caused by sand ingress was observed on 2 offshore oil wells in Brunei waters. Both wells were completed with a sub-horizontal openhole gravel pack and were subsequently shut in as the produced sand would likely cause damage to the surface facilities. In an offshore environment with limited workspace, crane capacity and wells with low reservoir pressures, it was decided to intervene the wells using a catenary coiled tubing (CT) vessel. The intervention required was to clean out the sand build up in the wells and install thru-tubing (TT) sand screens along the entire gravel packed screen section. Nitrified clean out was necessary due to low reservoir pressures while using a specialized jetting nozzle to optimize turbulence and lift along the deviated section. In addition, a knockout pot was utilized to filter and accommodate the large quantity of sand returned. The long sections of screens required could not be accommodated inside the PCE stack resulting in the need for the operation to be conducted as an open hole deployment using nippleless plug and fluid weight as well control barrier. A portable modular crane was also installed to assist the deployment of long screen sections prior to RIH with CT. Further challenges that needed to be addressed were the emergency measures. As the operation was to be conducted using the catenary system, the requirement for an emergency disconnect between the vessel and platform during the long cleanout operations and open hole deployment needed to be considered as a necessary contingency. Additional shear seal BOPs, and emergency deployment bars were also prepared to ensure that the operation could be conducted safely and successfully.

2019 ◽  
Author(s):  
Mohamad Mhemed ◽  
Nagib Elrotob ◽  
Abubakr Elsadawi ◽  
Mohamed Ben Abdalla ◽  
Ayoub Sherik

2021 ◽  
Author(s):  
Jin Li ◽  
Kunjian Wang ◽  
HaiNing Chen ◽  
Nigel Ruescher ◽  
Ruicheng Pang ◽  
...  

Abstract An offshore oil field in China was experiencing production challenges due to high water cut and low overall production. In order to boost production and address these challenges, adjacent reservoirs would need to be accessed and developed. Application of multilateral completion technology was considered the best method to achieve this, saving platform slots, increasing reservoir contact and keeling development cost low. An integrated solution was provided that allowed Technology Advancement Multilateral (TAML) Level#4 Multilateral Junctions with Gravel Packed Lateral sections, the first application of this type in China. The existing mainbore was temporarily isolated. Casing Exit was conducted at designated setting, and Hook Hanger TAML Level#4 Multilateral junction system was successfully installed and cemented. The horizontal Lateral bore was subsequently entered and gravel pack operations were successfully performed. Hydraulic integrity along well string is key to successful horizontal open hole gravel pack(OHGP). This TAML level#4 Multilateral completion design provided hydraulic integrity at junction during the whole OHGP process, the key to successful gravel pack. The mainbore can be restored as required. This paper concentrates on the technology utilized to successfully complete these wells. Multilateral and Gravel Pack equipment, challenges and solutions that were deployed to make this project a success are outlined. Three old wells in the field have applied this technology and have successfully improved production by 200m3/d. The wells give ability to selectively produce or comingle, allowing more flexibility with production. The introduction of Gravel Pack into the lateral affords greater sand control capabilities and ultimately assists overall production in well life. This application is now field proven with demonstrated production benefits and has potential for implementation in more developments in the region in future.


Author(s):  
Majeed Abimbola ◽  
Faisal Khan ◽  
Vikram Garaniya ◽  
Stephen Butt

As the cost of drilling and completion of offshore well is soaring, efforts are required for better well planning. Safety is to be given the highest priority over all other aspects of well planning. Among different element of drilling, well control is one of the most critical components for the safety of the operation, employees and the environment. Primary well control is ensured by keeping the hydrostatic pressure of the mud above the pore pressure across an open hole section. A loss of well control implies an influx of formation fluid into the wellbore which can culminate to a blowout if uncontrollable. Among the factors that contribute to a blowout are: stuck pipe, casing failure, swabbing, cementing, equipment failure and drilling into other well. Swabbing often occurs during tripping out of an open hole. In this study, investigations of the effects of tripping operation on primary well control are conducted. Failure scenarios of tripping operations in conventional overbalanced drilling and managed pressure drilling are studied using fault tree analysis. These scenarios are subsequently mapped into Bayesian Networks to overcome fault tree modelling limitations such s dependability assessment and common cause failure. The analysis of the BN models identified RCD failure, BHP reduction due to insufficient mud density and lost circulation, DAPC integrated control system, DAPC choke manifold, DAPC back pressure pump, and human error as critical elements in the loss of well control through tripping out operation.


2021 ◽  
Author(s):  
Laurie S. Duthie ◽  
Hussain A. Saiood ◽  
Abdulaziz A. Al-Anizi ◽  
Norman B. Moore ◽  
Carol Correia

Abstract Successful reservoir surveillance and production monitoring is a key component for effectively managing any field production strategy. For production logging in openhole horizontal extended reach wells (ERWs), the challenges are formidable and extensive; logging these extreme lengths in a cased hole would be difficult enough, but are considerably exaggerated in the openhole condition. A coiled tubing (CT) logging run in open hole must also contend with increased frictional forces, high dogleg severity, a quicker onset of helical buckling and early lockup. The challenge to effectively log these ERWs is further complicated by constraints in the completion where electrical submersible pumps (ESPs) are installed including a 2.4" bypass section. Although hydraulically powered coiled tubing tractors already existed, a slim CT tractor with real-time logging capabilities was not available in the market. In partnership with a specialist CT tractor manufacturer, a slim logging CT tractor was designed and built to meet the exceptional demands to pull the CT to target depth. The tractor is 100% hydraulically powered, with no electrical power allowing for uninterrupted logging during tractoring. The tractor is powered by the differential pressure from the bore of the CT to the wellbore, and is operated by a pre-set pump rate from surface. Developed to improve the low coverage in open hole ERW logging jobs, the tractor underwent extensive factory testing before being deployed to the field. The tractor was rigged up on location with the production logging tool and ran in hole. Once the coil tubing locked up, the tractor was activated and pulled the coil to cover over 90% of the open hole section delivering a pulling force of up to 3,200 lb. Real-time production logging was conducted simultaneously with the tractor activated, flowing and shut-in passes were completed to successfully capture the zonal inflow profile. Real-time logging with the tractor is logistically efficient and allows instantaneous decision making to repeat passes for improved data quality. The new slim logging tractor is the world's slimmest most compact, and the first of its kind CT tractor that enables production logging operations in horizontal extended reach open hole wells. The ability to successfully log these extended reach wells cannot be understated, reservoir simulations and management decisions can only as good as the quality of data available. Some of the advantages of drilling extended reach wells such as increased reservoir contact, reduced footprint and less wells drilled will be lost if sufficient reservoir surveillance cannot be achieved. To maximize the benefits of ERWs, creative solutions and innovative designs must continually be developed to push the boundaries further.


2020 ◽  
Vol 20 (2020) ◽  
pp. 105-106
Author(s):  
Antonio Orestes de Salvo Castro ◽  
Mayara de Jesus Rocha Santos ◽  
Albino Lopes D'Almeida ◽  
Geraldo de Souza Ferreira ◽  
Gilson Brito Alves Lima ◽  
...  

2003 ◽  
Author(s):  
Monica Ovesen ◽  
Mai Riise ◽  
Siv Arna Tanem ◽  
Kjell Tore Nesvik
Keyword(s):  

2007 ◽  
Author(s):  
Kevin S. Whaley ◽  
Colin John Price-Smith ◽  
Allan Jeffery Twynam ◽  
Phillip John Jackson

Author(s):  
Ming Luo ◽  
Deli Gao ◽  
Xin Zhao ◽  
Yuan Chen ◽  
Yupeng Yang ◽  
...  

Abstract The South China Sea has rich natural gas source with typical high-pressure high-temperature (HPHT) and the extremely narrow drilling window, which leads to frequent influx, even borehole abandonment. However, horizontal gas wells have been placed in the area to develop the gas reservoir, which presents greater well control challenges. Therefore, the influx risk evaluation is quite necessary to guide the well control design. Firstly, the influx mechanism is analyzed based on gas intrusion to provide a theoretical basis for well control design. It is found that influx usually occurs when drilling the high-temperature stratums and target layers. Secondly, the relationship between horizontal open-hole length and influx volume is calculated under different reservoir permeability, reservoir thickness, negative bottom hole pressure and horizontal open-hole section length. Thirdly, the characteristics of gas-liquid two-phase flow are described. Fourthly, the inflow risk evaluation and well control strategies of the target horizontal gas wells are proposed, and the influx risk evaluation envelope was established. The influx risk evaluation and well control strategies have been successfully applied to the DF gas field featuring offshore HPHT. Horizontal gas wells were drilled in the micro pressure window without accidents and the well cost was significantly reduced.


Sign in / Sign up

Export Citation Format

Share Document