scholarly journals Lagrangian bounds for large‐scale multicommodity network design: a comparison between Volume and Bundle methods

2020 ◽  
Vol 28 (1) ◽  
pp. 296-326
Author(s):  
Rui S. Shibasaki ◽  
Mourad Baiou ◽  
Francisco Barahona ◽  
Philippe Mahey ◽  
Mauricio C. Souza
2020 ◽  
Vol 37 (03) ◽  
pp. 2050009
Author(s):  
Naoto Katayama

The fixed-charge capacitated multicommodity network design problem is a fundamental optimization problem arising in many network configurations. The solution of the problem provides an appropriate network design as well as routes of multicommodity flows aimed at minimizing the total cost, which is the sum of the flow costs and fixed-charge costs over a network with limited arc capacities. In the present paper, we introduce a combined approach with a capacity scaling procedure for finding an initial feasible solution and an MIP neighborhood search for improving the solutions. Besides, we modify the procedure for application to large-scale problems. Computational experiments demonstrate the effectiveness of the proposed approach, and high-quality solutions are obtained for two problem sets from the literature.


Networks ◽  
2006 ◽  
Vol 49 (1) ◽  
pp. 90-99 ◽  
Author(s):  
P. Belotti ◽  
F. Malucelli ◽  
L. Brunetta

Author(s):  
Masoud Yaghini ◽  
Mohammad Karimi ◽  
Mohadeseh Rahbar ◽  
Rahim Akhavan

The fixed-cost Capacitated Multicommodity Network Design (CMND) problem is a well known NP-hard problem. This paper presents a matheuristic algorithm combining Simulated Annealing (SA) metaheuristic and Simplex method for CMND problem. In the proposed algorithm, a binary array is considered as solution representation and the SA algorithm manages open and closed arcs. Several strategies for opening and closing arcs are proposed and evaluated. In this matheuristic approach, for a given design vector, CMND becomes a Capacitated Multicommodity minimum Cost Flow (CMCF) problem. The exact evaluation of the CMCF problem is performed using the Simplex method. The parameter tuning for the proposed algorithm is done by means of design of experiments approach. The performance of the proposed algorithm is evaluated by solving different benchmark instances. The results of the proposed algorithm show that it is able to obtain better solutions in comparison with previous methods in the literature.


2011 ◽  
Vol 2 (4) ◽  
pp. 13-28 ◽  
Author(s):  
Masoud Yaghini ◽  
Mohammad Karimi ◽  
Mohadeseh Rahbar ◽  
Rahim Akhavan

The fixed-cost Capacitated Multicommodity Network Design (CMND) problem is a well known NP-hard problem. This paper presents a matheuristic algorithm combining Simulated Annealing (SA) metaheuristic and Simplex method for CMND problem. In the proposed algorithm, a binary array is considered as solution representation and the SA algorithm manages open and closed arcs. Several strategies for opening and closing arcs are proposed and evaluated. In this matheuristic approach, for a given design vector, CMND becomes a Capacitated Multicommodity minimum Cost Flow (CMCF) problem. The exact evaluation of the CMCF problem is performed using the Simplex method. The parameter tuning for the proposed algorithm is done by means of design of experiments approach. The performance of the proposed algorithm is evaluated by solving different benchmark instances. The results of the proposed algorithm show that it is able to obtain better solutions in comparison with previous methods in the literature.


Sign in / Sign up

Export Citation Format

Share Document