Linking life history traits in successive phases of a complex life cycle: effects of larval biomass on early juvenile development in an estuarine crab,Chasmagnathus granulata

Oikos ◽  
2004 ◽  
Vol 104 (3) ◽  
pp. 570-580 ◽  
Author(s):  
Luis Giménez, Klaus Anger ◽  
Gabriela Torres
2021 ◽  
Author(s):  
E.K. López-Estrada ◽  
I. Sanmartín ◽  
J.E. Uribe ◽  
S. Abalde ◽  
M. García-París

ABSTRACTChanges in life history traits, including reproductive strategies or host shifts, are often considered triggers of speciation, affecting diversification rates. Subsequently, these shifts can have dramatic effects on the evolutionary history of a lineage. In this study, we examine the consequences of changes in life history traits, in particular host-type and phoresy, within the hypermetamorphic clade of blister beetles (Meloidae). This clade exhibits a complex life cycle involving multiple metamorphoses and parasitoidism. Most tribes within the clade are bee-parasitoids, phoretic or non-phoretic, while two tribes feed on grasshopper eggs. Species richness differs greatly between bee and grasshopper specialist clades, and between phoretic and non-phoretic genera. We generated a mitogenomic phylogeny of the hypermetamorphic clade of Meloidae, including 21 newly generated complete mitogenomes. The phylogeny and estimated lineage divergence times were used to explore the association between diversification rates and changes in host specificity and phoresy, using State-Dependent Speciation and Extinction (SSE) models, while accounting for hidden factors and phylogenetic uncertainty within a Bayesian framework. The ancestor of the hypermetamorphic Meloidae was a non-phoretic bee-parasitoid, and independent transitions towards phoretic bee-parasitoidism or grasshopper specialization occurred multiple times. Bee-parasitoid lineages that are non-phoretic have significantly higher relative extinction rates and lower diversification rates than grasshopper specialists or phoretic bee-parasitoids, while no significant differences were found between the latter two strategies. This suggests that these two life strategies contributed independently to the evolutionary success of Nemognathinae and Meloinae, allowing them to escape from the evolutionary constraints imposed by their hypermetamorphic life-cycle, and that the “bee-by-crawling” strategy may be an evolutionary “dead end”. We show how SSE models can be used not only for testing diversification dependence in relation to the focal character but to identify hidden traits contributing to the diversification dynamics. The ability of blister beetles to explore new evolutionary scenarios including the development of homoplastic life strategies, are extraordinary outcomes along the evolution of a single lineage: the hypermetamorphic Meloidae.


Parasitology ◽  
1998 ◽  
Vol 116 (S1) ◽  
pp. S47-S55 ◽  
Author(s):  
J. C. Koella ◽  
P. Agnew ◽  
Y. Michalakis

SummarySeveral recent studies have discussed the interaction of host life-history traits and parasite life cycles. It has been observed that the life-history of a host often changes after infection by a parasite. In some cases, changes of host life-history traits reduce the costs of parasitism and can be interpreted as a form of resistance against the parasite. In other cases, changes of host life-history traits increase the parasite's transmission and can be interpreted as manipulation by the parasite. Alternatively, changes of host's life-history traits can also induce responses in the parasite's life cycle traits. After a brief review of recent studies, we treat in more detail the interaction between the microsporidian parasite Edhazardia aedis and its host, the mosquito Aedes aegypti. We consider the interactions between the host's life-history and parasite's life cycle that help shape the evolutionary ecology of their relationship. In particular, these interactions determine whether the parasite is benign and transmits vertically or is virulent and transmits horizontally.Key words: host-parasite interaction, life-history, life cycle, coevolution.


2013 ◽  
Vol 34 (3) ◽  
pp. 279-287 ◽  
Author(s):  
Jørgen Berge ◽  
Jasmine Nahrgang

AbstractDuring a cruise to Svalbard in September 2012 a unique collection of the little known but widely distributed Atlantic spiny lumpsucker (Eumicrotremus spinosus) was made in the Hinlopen Strait. A total of 140 individuals (36-101mm total length) were collected using a bottom trawl. All individuals were sexed and 26 of these were also analysed for gonadosomatic index (GSI), hepatosomatic index (HSI) and stomach content. The sex ratio of the entire sample showed a strong bias towards females (75% of all examined specimens). The GSI ranged from 1.4 to 5.8% except for one female with a GSI of 20%. All females carried gonads in which eggs were clearly visible, independent of size, indicative of an early sexual maturation and an iteroparous life cycle of females. All examined specimens had almost an exclusively pelagic diet, with Themisto libellula constituting 100% of the stomach content in 80% of the examined fishes. The results are discussed in relation to diel vertical migration of Arctic zooplankton and deep migrating layers.


Parasitology ◽  
2014 ◽  
Vol 142 (1) ◽  
pp. 134-144 ◽  
Author(s):  
CHELSEA L. WOOD ◽  
KEVIN D. LAFFERTY

SUMMARYTo understand how fisheries affect parasites, we conducted a meta-analysis of studies that contrasted parasite assemblages in fished and unfished areas. Parasite diversity was lower in hosts from fished areas. Larger hosts had a greater abundance of parasites, suggesting that fishing might reduce the abundance of parasites by selectively removing the largest, most heavily parasitized individuals. After controlling for size, the effect of fishing on parasite abundance varied according to whether the host was fished and the parasite's life cycle. Parasites of unfished hosts were more likely to increase in abundance in response to fishing than were parasites of fished hosts, possibly due to compensatory increases in the abundance of unfished hosts. While complex life cycle parasites tended to decline in abundance in response to fishing, directly transmitted parasites tended to increase. Among complex life cycle parasites, those with fished hosts tended to decline in abundance in response to fishing, while those with unfished hosts tended to increase. However, among directly transmitted parasites, responses did not differ between parasites with and without fished hosts. This work suggests that parasite assemblages are likely to change substantially in composition in increasingly fished ecosystems, and that parasite life history and fishing status of the host are important in predicting the response of individual parasite species or groups to fishing.


Author(s):  
Michaël Gras ◽  
Georges Safi ◽  
Hugo Lebredonchel ◽  
Jérôme Quinquis ◽  
Éric Foucher ◽  
...  

Within the English Channel, the common cuttlefish Sepia officinalis is a semelparous species for which a 2-year life cycle was exclusively described in the 1980s. In the 1990s, new research indicated that whilst a 2-year life cycle was still evident for females and the large majority of males, a small proportion of males were actually maturing at only 1 year of age. Since 1980, the interest of French and UK fishers for this resource has increased and it is nowadays one of the most important demersal species of the area and is considered to be fully exploited. From the start of the 20th century, fishing effort and sea surface temperatures have increased in the English Channel and have probably impacted the life history traits of S. officinalis. A 2-year sampling programme was undertaken at French landing sites of the English Channel during the reproduction season in 2010 and 2011 to estimate if the proportion of 1-year-old mature animals has changed. Age determination was carried out by coupling polymodal decomposition and lipofuscin measurement. Size-at-maturity for each year and each sex was estimated by fitting a binomial error GLM. Results highlight that a variable percentage of males and females belonging to the first cohort are mature and that size-at-maturity was lower than that observed in the 1990s. Finally, different parameters, such as temperature and fishing pressure are explored to discuss changes in life history traits suggesting that cuttlefish could be an indicator of the temperature regime shift in the English Channel.


2007 ◽  
Vol 125 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Tadashi Gomi ◽  
Masami Nagasaka ◽  
Takeshi Fukuda ◽  
Hideharu Hagihara

2016 ◽  
Vol 94 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Lee Hyeun-Ji ◽  
Frank Johansson

Organisms with a complex life cycle are characterized by a life-history shift through metamorphosis and include organisms such as insects and amphibians. They must optimize their use of resources and behaviour across different life stages to maximize their fitness. An interesting question with regard to such life-history shifts is whether growth in the juvenile stage can be compensated for in the adult stage. Here we ask whether emerald damselflies (Lestes sponsa (Hansemann, 1823)) are able to compensate for depressed growth during the juvenile aquatic stage in their terrestrial adult stage. Lestes sponsa emerge at a fixed adult body size, but feed during the adult stage and are thus able to gain mass as adults. We performed a mark–recapture study to answer whether individuals that emerge from metamorphosis with a low mass are able to compensate by subsequent mass gain during the adult stage. Results showed that compensatory mass gain occurred in the adult stage such that small individuals gained more mass than large individuals. We also found that females gained more mass than males. However, individuals that emerged at a low mass still had lower mass as mature adults than individuals that emerged at a high mass, suggesting that compensation was not complete. This suggests that larval ecology and adult fitness are tightly linked and future research should focus more on elucidating the nature of this relationship.


Sign in / Sign up

Export Citation Format

Share Document