burying beetle
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 71)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Vol 118 (48) ◽  
pp. e2102450118
Author(s):  
Ana Duarte ◽  
Darren Rebar ◽  
Allysa C. Hallett ◽  
Benjamin J. M. Jarrett ◽  
Rebecca M. Kilner

Parental care can be partitioned into traits that involve direct engagement with offspring and traits that are expressed as an extended phenotype and influence the developmental environment, such as constructing a nursery. Here, we use experimental evolution to test whether parents can evolve modifications in nursery construction when they are experimentally prevented from supplying care directly to offspring. We exposed replicate experimental populations of burying beetles (Nicrophorus vespilloides) to different regimes of posthatching care by allowing larvae to develop in the presence (Full Care) or absence of parents (No Care). After only 13 generations of experimental evolution, we found an adaptive evolutionary increase in the pace at which parents in the No Care populations converted a dead body into a carrion nest for larvae. Cross-fostering experiments further revealed that No Care larvae performed better on a carrion nest prepared by No Care parents than did Full Care larvae. We conclude that parents construct the nursery environment in relation to their effectiveness at supplying care directly, after offspring are born. When direct care is prevented entirely, they evolve to make compensatory adjustments to the nursery in which their young will develop. The rapid evolutionary change observed in our experiments suggests there is considerable standing genetic variation for parental care traits in natural burying beetle populations—for reasons that remain unclear.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wenxia Wang ◽  
Long Ma ◽  
Maaike A. Versteegh ◽  
Hua Wu ◽  
Jan Komdeur

Life-history theory predicts that increased resource allocation in current reproduction comes at the cost of survival and future reproductive fitness. In taxa with biparental care, each parent can adjust investment on current reproduction according to changes in their partner’s effort, but these adjustments may be different for males and females as they may have different reproductive strategies. Numerous theoretical and empirical studies have proposed the mechanism underlying such adjustments. In addition, the value of the brood or litter (brood size) has also been suggested to affect the amount of care through manipulation of brood size. While the two conditions have been studied independently, the impact of their interplay on potential sex-dependent future reproductive performance remains largely unknown. In this study, we simultaneously manipulated both care system (removal of either parent vs. no removal) and brood size in a burying beetle (Nicrophorus vespilloides) to understand their joint effect on reproductive allocation and trade-off between current and future reproduction. Our results show that males compensated for mate loss by significantly increasing the level of care regardless of brood size, while females exhibited such compensation only for small brood size. Additionally, with an increase in allocation to current reproduction, males showed decreased parental investment during the subsequent breeding event as a pair. These findings imply a dual influence of parental care system and brood size on allocation in current reproduction. Moreover, the impact of such adjustments on sex-dependent differences in future reproduction (parental care, larvae number, and average larval mass at dispersal) is also demonstrated. Our findings enhance the understanding of sex roles in parental investment and highlight their importance as drivers of reproductive allocation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0255660
Author(s):  
Christian O. Ayala-Ortiz ◽  
Jacob W. Farriester ◽  
Carrie J. Pratt ◽  
Anna K. Goldkamp ◽  
Jessica Matts ◽  
...  

Nicrophorus is a genus of beetles that bury and transform small vertebrate carcasses into a brood ball coated with their oral and anal secretions to prevent decay and that will serve as a food source for their young. Nicrophorus pustulatus is an unusual species with the ability to overtake brood of other burying beetles and whose secretions, unlike other Nicrophorus species, has been reported not to exhibit antimicrobial properties. This work aims to better understand how the presence or absence of a food source influences the expression of genes involved in the feeding process of N. pustulatus. To achieve that, total RNA was extracted from pooled samples of salivary gland tissue from N. pustulatus and sequenced using an Illumina platform. The resulting reads were used to assemble a de novo transcriptome using Trinity. Duplicates with more than 95% similarity were removed to obtain a “unigene” set. Annotation of the unigene set was done using the Trinotate pipeline. Transcript abundance was determined using Kallisto and differential gene expression analysis was performed using edgeR. A total of 651 genes were found to be differentially expressed, including 390 upregulated and 261 downregulated genes in fed insects compared to starved. Several genes upregulated in fed beetles are associated with the insect immune response and detoxification processes with only one transcript encoding for the antimicrobial peptide (AMP) defensin. These results confirm that N. pustulatus does not upregulate the production of genes encoding AMPs during feeding. This study provides a snapshot of the changes in gene expression in the salivary glands of N. pustulatus following feeding while providing a well described transcriptome for the further analysis of this unique burying beetle.


2021 ◽  
Author(s):  
Hilary Cope ◽  
Edward Ivimey-Cook ◽  
Jacob Moorad

AbstractParental age at reproduction influences offspring size and survival by affecting prenatal and postnatal conditions in a wide variety of species, including humans. However, most investigations into this manifestation of ageing focus upon maternal age effects; the effects of paternal age and interactions between maternal and paternal age are often neglected. Furthermore, even when maternal age effects are studied, pre- and postnatal effects are confounded. Using a cross-fostered experimental design, we investigated the joint effects of paternal and pre- and postnatal maternal ages on numerous offspring outcomes in a laboratory population of a species of burying beetle, Nicrophorus vespilloides. When we correct our tests for significance for multiple comparisons, we found no clear evidence for any parental effect senescence acting on egg size, larval weight, or larval survival. Nor did we find a statistical effect of paternal or egg producer age on the outcomes of foster mothers as measured by weight change experienced during caregiving. These findings are consistent with recent negative results reported in a similar study of N. vespilloides maternal age effects while also expanding these to other offspring traits and to paternal age effects. We discuss how the peculiar life history of this species may promote selection to resist the evolution of parental age effects, and how this might have influenced our ability to detect senescence.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tom Ratz ◽  
Katerina Kremi ◽  
Lyndon Leissle ◽  
Jon Richardson ◽  
Per T. Smiseth

In species where both parents cooperate to care for their joint offspring, one sex often provides more care than the other. The magnitude of such sex differences often varies both between and within species and may depend on environmental conditions, such as access to resources, predation risk and interspecific competition. Here we investigated the impact of one such environmental variable – access to resources for breeding – on the magnitude of sex differences in parental care in the burying beetle Nicrophorus vespilloides. This species breeds on the carcasses of small vertebrates, which are the sole food source for parents and offspring during breeding. We manipulated access to resources by providing pairs with mouse carcasses from a broad mass range (3.65–26.15 g). We then monitored subsequent effects on the duration and amount of care provided by males and females, male and female food consumption and weight change during breeding, and larval traits related to offspring performance. We found that males increased their duration of care as carcass mass increased, while females remained with the brood until it had completed its development irrespective of carcass mass. There were thus more pronounced sex differences in parental care when parents had access to fewer resources for breeding. Overall, our findings show that sex differences between caring parents vary depending on access to resources during breeding. The finding that males extended their duration of care on larger carcasses suggests that access to more resources leads to a shift toward more cooperation between caring parents.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253885
Author(s):  
Ethan P. Damron ◽  
Ashlee N. Smith Momcilovitch ◽  
Dane Jo ◽  
Mark C. Belk

Multigenerational effects (often called maternal effects) are components of the offspring phenotype that result from the parental phenotype and the parental environment as opposed to heritable genetic effects. Multigenerational effects are widespread in nature and are often studied because of their potentially important effects on offspring traits. Although multigenerational effects are commonly observed, few studies have addressed whether they affect offspring fitness. In this study we assess the effect of potential multigenerational effects of parental body size and natal carcass size on lifetime fitness in the burying beetle, Nicrophorus marginatus (Coleoptera; Silphidae). Lifespan, total number of offspring, and number of offspring in the first reproductive bout were not significantly related to parental body size or natal carcass size. However, current carcass size used for reproduction was a significant predictor for lifetime number of offspring and number of offspring in the first brood. We find no evidence that multigenerational effects from larger parents or larger natal carcasses contribute to increased fitness of offspring.


Sign in / Sign up

Export Citation Format

Share Document