Transgenerational plasticity for sexual reproduction and diapause in the life cycle of monogonont rotifers: intraclonal, intraspecific and interspecific variation in the response to crowding

2004 ◽  
Vol 18 (3) ◽  
pp. 458-466 ◽  
Author(s):  
T. SCHRODER ◽  
J. J. GILBERT
Author(s):  
Ekaterina A. Volkova

Identification of Spirogyra species is based on the morphology of the fertile specimens. This work provides characteristics of growth and the time of reproduction of Spirogyra decimina var. juergensii in Lake Baikal and describes sexual reproduction and conditions for germination of new filaments of this species isolated from the lake.


Genetics ◽  
1992 ◽  
Vol 132 (4) ◽  
pp. 1195-1198 ◽  
Author(s):  
D B Goldstein

Abstract The life cycle of eukaryotic, sexual species is divided into haploid and diploid phases. In multicellular animals and seed plants, the diploid phase is dominant, and the haploid phase is reduced to one, or a very few cells, which are dependent on the diploid form. In other eukaryotic species, however, the haploid phase may dominate or the phases may be equally developed. Even though an alternation between haploid and diploid forms is fundamental to sexual reproduction in eukaryotes, relatively little is known about the evolutionary forces that influence the dominance of haploidy or diploidy. An obvious genetic factor that might result in selection for a dominant diploid phase is heterozygote advantage, since only the diploid phase can be heterozygous. In this paper, I analyze a model designed to determine whether heterozygote advantage could lead to the evolution of a dominant diploid phase. The main result is that heterozygote advantage can lead to an increase in the dominance of the diploid phase, but only if the diploid phase is already sufficiently dominant. Because the diploid phase is unlikely to be increased in organisms that are primarily haploid, I conclude that heterozygote advantage is not a sufficient explanation of the dominance of the diploid phase in higher plants and animals.


2020 ◽  
Vol 42 (4) ◽  
pp. 403-410 ◽  
Author(s):  
Haruka Takagi ◽  
Atsushi Kurasawa ◽  
Katsunori Kimoto

Abstract Gamete release has been frequently observed in laboratory cultures of various species of planktonic foraminifera. Those observations have been taken as evidence that these organisms produce new generations exclusively by sexual reproduction. We report here the first observation of asexual reproduction in Globigerinita uvula, a small, microperforate foraminifera. The asexual phase was associated with the release of ca. 110 offspring, all of which hosted symbiotic algae that must have been passed on directly from the parent. This event was also the first observation of vertical transmission of symbionts in planktonic foraminifera. Although the trigger of the observed asexual reproduction and its frequency in nature remain unknown, our observation indicates that among the planktonic foraminifera, at least G. uvula has not abandoned the asexual phase of its life cycle.


Author(s):  
Yulia A. Podunay ◽  
Nickolai A. Davidovich ◽  
Olga I. Davidovich

Sexual reproduction and the life cycle of the marine pennate diatom Entomoneis cf. paludosa are described. The reproduction in this species is characterized by morphological and behavioral isogamy. Two gametangia are involved in the sexual process, each of which produces two gametes.


2000 ◽  
Vol 40 (5) ◽  
pp. 451-471 ◽  
Author(s):  
Angel Calsina ◽  
José M. Mazón ◽  
Manuel Serra

Sign in / Sign up

Export Citation Format

Share Document