Reproductive isolation mechanisms among four closely-related species of Conospermum (Proteaceae)

1994 ◽  
Vol 116 (1) ◽  
pp. 13-31 ◽  
Author(s):  
DAVID A. MORRISON ◽  
MARGARET McDONALD ◽  
PETER BANKOFF ◽  
PAUL QUIRICO ◽  
DAVID MACKAY
1967 ◽  
Vol 15 (3) ◽  
pp. 501 ◽  
Author(s):  
H Wolda

A number of samples from wild populations of the Queensland fruit fly, Dacus tryoni and D. neohumeralis, were studied. There is a considerable variation in the colour pattern on the humeral callus. This variation is continuous so that any criterion for distinguishing between "intermediates" and "good species" is purely arbitrary. It was found in areas where D. neohumeralis does not occur as well as in localities where it is very abundant. By whatever criterion one defines intermediates, there appears to be no relation between the frequency of such forms and the presence or absence of D. neohumeralis or with the relative proportions of the two species in the population. However, flies with only a very small yellow area on an otherwise brown humeral callus were found only in Cairns where D. neohumeralis is usually the most abundant species. A similar variation in humeral callus pattern was found in other related species, such as D. kraussi and D. halfordiae. It is concluded that the intermediate colour forms may not be hybrids between D. tryoni and D. neohumeralis but variants of D. tryoni and, possibly the darker forms from Cairns, of D. neohumeralis.


Author(s):  
Kosei Sato ◽  
Daisuke Yamamoto

The main theme of the review is how changes in pheromone biochemistry and the sensory circuits underlying pheromone detection contribute to mate choice and reproductive isolation. The review focuses primarily on gustatory and non-volatile signals in Drosophila. Premating isolation is prevalent among closely related species. In Drosophila, preference for conspecifics against other species in mate choice underlies premating isolation, and such preference relies on contact chemosensory communications between a female and male along with other biological factors. For example, although D. simulans and D. melanogaster are sibling species that yield hybrids, their premating isolation is maintained primarily by the contrasting effects of 7,11-heptacosadiene (7,11-HD), a predominant female pheromone in D. melanogaster, on males of the two species: it attracts D. melanogaster males and repels D. simulans males. The contrasting preference for 7,11-HD in males of these two species is mainly ascribed to opposite effects of 7,11-HD on neural activities in the courtship decision-making neurons in the male brain: 7,11-HD provokes both excitatory and inhibitory inputs in these neurons and differences in the balance between the two counteracting inputs result in the contrasting preference for 7,11-HD, i.e., attraction in D. melanogaster and repulsion in D. simulans. Introduction of two double bonds is a key step in 7,11-HD biosynthesis and is mediated by the desaturase desatF, which is active in D. melanogaster females but transcriptionally inactivated in D. simulans females. Thus, 7,11-HD biosynthesis diversified in females and 7,11-HD perception diversified in males, yet it remains elusive how concordance of the changes in the two sexes was attained in evolution.


2019 ◽  
Vol 21 (1) ◽  
pp. 75-80
Author(s):  
Takahiro Tezuka ◽  
Katsuyuki Ichitani ◽  
Yuichi Matsumoto ◽  
Hai He ◽  
Tetsu Kinoshita ◽  
...  

2019 ◽  
Author(s):  
M.F. González-Rojas ◽  
K. Darragh ◽  
J Robles ◽  
M. Linares ◽  
S Schulz ◽  
...  

ABSTRACTColour pattern has been long recognised as the trait that drives mate recognition betweenHeliconiusspecies that are phylogenetically close. However, when this cue is compromised such as in cases of mimetic, sympatric and closely related species, alternative mating signals must evolve to ensure reproductive isolation and species integrity. The closely related speciesHeliconius melpomene malletiandH. timareta florencia, occur in the same geographic region and despite being co-mimics they display strong reproductive isolation. In order to test which cues differ between species, and therefore potentially contribute to reproductive isolation, we quantified differences in wing phenotype and male chemical profile. As expected, wing colour pattern was indistinguishable between the two species while the chemical profile of their male sex pheromones showed marked differences. We then conducted behavioural experiments to study the importance of these signals in mate recognition by females. In agreement with our previous results, we found that pheromones and not wing colour pattern drive the preference of females by conspecific males. In addition, experiments with hybrid males and females suggested an important genetic component for both pheromone production and preference. Altogether, these results suggest that pheromones are the major reproductive barrier opposing gene flow between these two sister and co-mimic species.


2020 ◽  
Vol 74 (1) ◽  
pp. 477-495
Author(s):  
Jasmine Ono ◽  
Duncan Greig ◽  
Primrose J. Boynton

The genus Saccharomyces is an evolutionary paradox. On the one hand, it is composed of at least eight clearly phylogenetically delineated species; these species are reproductively isolated from each other, and hybrids usually cannot complete their sexual life cycles. On the other hand, Saccharomyces species have a long evolutionary history of hybridization, which has phenotypic consequences for adaptation and domestication. A variety of cellular, ecological, and evolutionary mechanisms are responsible for this partial reproductive isolation among Saccharomyces species. These mechanisms have caused the evolution of diverse Saccharomyces species and hybrids, which occupy a variety of wild and domesticated habitats. In this article, we introduce readers to the mechanisms isolating Saccharomyces species, the circumstances in which reproductive isolation mechanisms are effective and ineffective, and the evolutionary consequences of partial reproductive isolation. We discuss both the evolutionary history of the genus Saccharomyces and the human history of taxonomists and biologists struggling with species concepts in this fascinating genus.


1997 ◽  
Vol 20 (4) ◽  
pp. 583-585 ◽  
Author(s):  
Denise Selivon ◽  
João S. Morgante

The reproductive isolation between two closely related species, Anastrepha bistrigata and A. striata, was studied in the laboratory. Interespecific copulation attempts were observed, but examination of the spermathecae showed that sperm transference did not occur, even after a prolonged period of contact between the mating pairs. These results indicate prezygotic isolation. The analysis of the hourly distribution of mating activities under laboratory conditions, here described for the first time for A. bistrigata, clearly showed differences for the two species, the activities being concentrated in the afternoon period for A. striata and in the morning for A. bistrigata


Sign in / Sign up

Export Citation Format

Share Document