Alternative Route for Synthesis of Barium Titanyl Oxalate: Molecular Precursor for Macrocrystalline Barium Titanate Powders

2005 ◽  
Vol 79 (10) ◽  
pp. 2795-2797 ◽  
Author(s):  
Hari S. Potdar ◽  
Subhash B. Deshpande ◽  
Sadgopal K. Date
2006 ◽  
Vol 301 ◽  
pp. 215-218 ◽  
Author(s):  
Michiyasu Nishiyama ◽  
Takuya Hoshina ◽  
Hirofumi Kakemoto ◽  
Takaaki Tsurumi ◽  
Satoshi Wada

A new method for ultrafine barium titanate (BaTiO3) particles with diameters of around 5 nm is proposed. In this method, barium titanyl oxalate aqua solution with low concentration below 10-3 mol/l was used as the starting material. The droplets with a size below 3 μm were atomized with an ultrasonic vibrator, dried and thermally decomposed at higher temperatures over 300°C. In the preparation of the BaTiO3 particles, there were two parameters such as thermal decomposition temperature and precursor solution concentration. Therefore, various particles were prepared by changing these parameters. Finally, non-aggregated nm-sized BaTiO3 particles with an average diameter of 5.2 nm, despite wide size distribution from 2 to 20 nm, were prepared by using the precursor solution with 10-6 mol/l.


2010 ◽  
Vol 445 ◽  
pp. 171-174 ◽  
Author(s):  
Shuhei Kondo ◽  
Tatsuya Kita ◽  
Petr Pulpan ◽  
Chikako Moriyoshi ◽  
Yoshihiro Kuroiwa ◽  
...  

Barium titanate (BaTiO3) nanoparticles were prepared by a two-step thermal decomposition method using barium titanyl oxalate nanoparticles of size 30 nm with and without dry-jet milling. Dry-jet milled barium titanyl oxalate nanoparticles (BTO-B) were well-dispersed whereas those without the dry-jet milling procedure (BTO-A) were partially aggregated. A heat annealing of obtained BaTiO3 nanoparticles at the same temperature resulted in crystallite sizes of the BTO-A derived BaTiO3 nanoparticles much smaller than those of the BTO-B derived. A mesoscopic particle structure analysis of revealed much thinner surface cubic layer thickness of the BTO-B derived BaTiO3 nanoparticles compared with the BTO-A derived BaTiO3 nanoparticles. This indicated the particle growth rate to be the most important parameter for the surface cubic layer thickness determination. A relationship between the surface cubic layer thickness and the particle growth rate was investigated precisely in this study.


2013 ◽  
Vol 566 ◽  
pp. 273-276
Author(s):  
Tatsuya Kita ◽  
Takahiro Takei ◽  
Nobuhiro Kumada ◽  
Kouichi Nakashima ◽  
Ichiro Fujii ◽  
...  

Highly dispersed barium titanate (BaTiO3, BT) nanoparticles were prepared by the new 2-step thermal decomposition method of barium titanyl oxalate of 30 nm in size. The nanoparticles were heated at 450 °C for 5 hours in air to yield intermediate product: Ba2Ti2O5CO3. Highly dispersed BaTiO3 nanoparticles were prepared by rotationally stirring it at the reduced pressure of 0.2 Pa at various temperatures between 800 °C and 900 °C. The particle size and morphology of the BaTiO3 nanoparticles were investigated by X-ray diffraction and scanning electron microscopy. These measurements showed that the BT nanoparticles were highly dispersed and well-crystallized.


Sign in / Sign up

Export Citation Format

Share Document