scholarly journals Moment tensor inversion of small earthquakes in southwestern Germany for the fault plane solution

1990 ◽  
Vol 101 (1) ◽  
pp. 133-146 ◽  
Author(s):  
J. E. Ebel ◽  
K.-P. Bonjer
1987 ◽  
Vol 3 (3) ◽  
pp. 419-434 ◽  
Author(s):  
Randall A. White ◽  
David H. Harlow ◽  
Salvador Alvarez

The San Salvador earthquake of October 10, 1986 originated along the Central American volcanic chain within the upper crust of the Caribbean Plate. Results from a local seismograph network show a tectonic style main shock-aftershock sequence, with a magnitude, Mw, 5.6. The hypocenter was located 7.3 km below the south edge of San Salvador. The main shock ruptured along a nearly vertical plane toward the north-northeast. A main shock fault-plane solution shows a nearly vertical fault plane striking N32\sz\E, with left-lateral sense of motion. This earthquake is the second Central American volcanic chain earthquake documented with left-lateral slip on a fault perpendicular to the volcanic chain. During the 2 1/2 years preceeding the earthquake, minor microseismicity was noted near the epicenter, but we show that this has been common along the volcanic chain since at least 1953. San Salvador was previously damaged by a volcanic chain earthquake on May 3, 1965. The locations of six foreshocks preceding the 1965 shock show a distinctly WNW-trending distribution. This observation, together with the distribution of damage and a fault-plane solution, suggest that right-lateral slip occurred along a fault sub-parallel with Central American volcanic chain. We believe this is the first time such motion has been documented along the volcanic chain. This earthquake was also unusual in that it was preceded by a foreshock sequence more energetic than the aftershock sequence. Earlier this century, on June 08, 1917, an Ms 6.4 earthquake occurred 30 to 40 km west of San Salvador Volcano. Only 30 minutes later, an Ms 6.3 earthquake occurred, centered at the volcano, and about 35 minutes later the volcano erupted. In 1919 an Ms 6 earthquake occurred, centered at about the epicenter of the 1986 earthquake. We conclude that the volcanic chain is seismically very active with variable styles of seismicity.


1981 ◽  
Vol 71 (4) ◽  
pp. 1369-1372
Author(s):  
Jay J. Pulli ◽  
Michael J. Guenette

abstract On 23 November 1980, a small (magnitude 2.9) earthquake occurred on the Chelmsford-Lowell, Massachusetts, border, approximately 10 km northeast of the MIT seismic station at Westford, Massachusetts (WFM). Thus we were able to accurately determine the focal depth, which is generally not the case in New England. Our hypocentral solution was latitude 41.63, longitude −71.36, depth 1.5 km, at origin time 00:39:32.0 UTC. The fault plane solution shows either strike-slip or dip-slip faulting with a P axis trending NE-SW, which is in agreement with overcoring measurements in a nearby granite quarry.


1969 ◽  
Vol 59 (3) ◽  
pp. 1149-1162
Author(s):  
Harsh Gupta ◽  
Hari Narain ◽  
B. K. Rastogi ◽  
Indra Mohan

abstract Data now available on the Koyna earthquake have been studied in detail. Different origin times and epicenters given by India Meteorological Department and Central Water and Power Research Station, field evidences and nature of the seismograms for this earthquake suggest a multiple event. A fault plane solution has been obtained by using the sense of first motions. Seismicity in Koyna region has been found to increase with the increase of water level in the reservoir and vice-versa with a certain time lag. The two major earthquakes of this region have similar foreshock-aftershock pattern, corresponding to type 2 of Mogi's (1963) models. Aftershocks of this earthquake are related by a function Log N = a + bM, value of b being −0.8. Possibility of predicting maximum expected magnitude at a certain seismic activity level of Koyna region has been also pointed out.


1988 ◽  
Vol 126 (1) ◽  
pp. 55-68 ◽  
Author(s):  
B. Papazachos ◽  
A. Kiratzi ◽  
B. Karacostas ◽  
D. Panagiotopoulos ◽  
E. Scordilis ◽  
...  

Nature ◽  
1980 ◽  
Vol 286 (5769) ◽  
pp. 142-143 ◽  
Author(s):  
Geoffrey King

EKSPLORIUM ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 111
Author(s):  
Priyobudi Priyobudi ◽  
Mohamad Ramdhan

ABSTRAK. Keberadaan sesar aktif dengan pola sesar naik di daerah Plampang berhasil diungkap dari sebaran hiposenter terelokasi, hasil inversi momen tensor, dan pemodelan perubahan tegangan Coulomb. Studi ini juga berhasil mengungkap sumber gempa pada sesar aktif tersebut dengan kedalaman relatif dangkal yang bisa menjadi ancaman di Pulau Sumbawa jika magnitudo maksimumnya rilis di masa yang akan datang. Hasil relokasi hiposenter menunjukkan sebaran episenter berarah barat daya–timur laut. Hal ini didukung juga oleh hasil inversi momen tensor yang menunjukkan bidang sesar berarah barat daya–timur laut (N2240E) dengan dip cukup curam (490). Penampang seismisitas vertikal pada arah dip menunjukkan adanya pola sesar naik yang semakin landai seiring bertambahnya kedalaman. Bidang sesar yang landai menunjukkan struktur decollement pada kedalaman 10–15 km dan berangsur menjadi curam sebagai struktur splay fault pada kedalaman 0–10 km. Hal tersebut konsisten dengan hasil inversi momen tensor yang menunjukkan mekanisme pergerakan sesar naik terjadi pada kedalaman 7 km. Pemodelan perubahan tegangan Coulomb menunjukkan adanya penambahan stress di luar area bidang sesar sehingga memicu terjadinya aftershocks. Sebaran gempa susulan menunjukkan adanya bidang sesar hipotetik dengan panjang 19 km dan lebar 12 km. Sesar sebesar ini berpotensi membangkitkan gempa dengan kekuatan Mw 6,4. Gempa Sumbawa 13 Juni 2020 dengan magnitudo M 5,3 disebabkan oleh sebagian kecil aktivitas dari bidang sesar tersebut.ABSTRACT. The existence of an active fault with a reverse fault mechanism in the Plampang area is successfully delineated from the distribution of the relocated hypocenter, the moment tensor inversion, and the Coulomb stress changes. This study also reveals the source of the earthquake in the active fault with a relatively shallow depth which can be a threat on Sumbawa Island if the maximum magnitude is released in the future. Seismicity from hypocenter relocation shows the distribution of the epicenter with a southwest–northeast direction. It is also supported by the moment tensor inversion result which shows the fault plane trending southwest–northeast (N2240E) with a steep dip (490). The vertical section of seismicity in the dip direction shows that the slope of the plane has a lower angle with increasing depth. The lower angle of a fault plane shows a decollement structure at a depth of 10–15 km and gradually becomes steep as a splay fault structure at a depth of 0–10 km. It is consistent with the result of moment tensor inversion which shows the mechanism of a reverse fault that occurred at a depth of 7 km. The Coulomb stress changes show the stress increasing outside the fault plane area, which triggers aftershocks. The distribution of aftershocks shows a hypothetical fault plane of 19 km long and 12 km wide. A fault of this size has the potential to generate an earthquake with a magnitude maximum of Mw 6.4. The Sumbawa earthquake on June 13, 2020, having M 5.3 was caused by a small part of the activity from the fault.


Sign in / Sign up

Export Citation Format

Share Document