scholarly journals Scattering of Plane Sh-Waves By A Semi-Parabolic Cylindrical Canyon In an Elastic Half-Space

1990 ◽  
Vol 100 (1) ◽  
pp. 79-86 ◽  
Author(s):  
V. W. Lee
1972 ◽  
Vol 62 (1) ◽  
pp. 63-83
Author(s):  
M. D. Trifunac

Abstract The closed-form solution of the dynamic interaction of a shear wall and the isotropic homogeneous and elastic half-space, previously studied only for vertically-incident SH waves, is generalized to any angle of incidence. It is shown that the interaction equation is independent of the incidence angle, while the surface-ground displacements heavily depend on it. For the two-dimensional model studied, it is demonstrated that disturbances generated by waves scattering and diffracting around the rigid foundation mass are not a local phenomenon but extend to large distances relative to the characteristic foundation length.


Author(s):  
Liguo Jin ◽  
Liting Du ◽  
Haiyan Wang

This paper presents a closed-form analytical solution for the dynamic response of two independent SDOF oscillators standing on one flexible foundation embedded in an elastic half-space and excited by plane SH waves. The solution is obtained by the wave function expansion method and is verified by comparison with the results of the special cases of a rigid foundation and the published research result of a flexible foundation. The model is utilized to investigate how the foundation stiffness influences the system response. The results show that there will be a significant interaction between the two independent structures on one flexible foundation and the intensity of the interaction is mainly dependent on foundation stiffness and structural stiffness. For a system with more flexible foundation, strong interaction will exist between the two structures; larger structural stiffness will also lead to a strong interaction between the two structures. When the structural mass and the structural stiffness are all larger, the flexible foundation cannot be treated as a rigid foundation even if the foundation stiffness is many times larger than that of soil. This model may be useful to get insight into the effects of foundation flexibility on the interaction of two independent structures standing on one flexible foundation.


1998 ◽  
Vol 120 (4) ◽  
pp. 343-348 ◽  
Author(s):  
C.-S. Yeh ◽  
T.-J. Teng ◽  
W.-I. Liao

The dynamic response of a massless rigid hemispherical foundation embedded in a uniform homogeneous elastic half-space is considered in this study. The foundation is subjected to external forces, moments, plane harmonic P and SH waves, respectively. The series solutions are constructed by three sequences of Lamb’s singular solutions which satisfy the traction-free conditions on ground surface and radiation conditions at infinity, automatically, and their coefficients are determined by the boundary conditions along the soil-foundation interface in the least square sense. The fictitious eigen-frequencies, which arise in integral equation method, will not appear in the numerical calculation by the proposed method. The impedance functions which characterize the response of the foundation to external harmonic forces and moments at low and intermediate frequencies are calculated and the translational and rocking responses of the foundation when subjected to plane P and SH waves are also presented and discussed in detail.


2016 ◽  
Vol 90 ◽  
pp. 147-157 ◽  
Author(s):  
Qijian Liu ◽  
Chao Zhang ◽  
Maria I. Todorovska

2010 ◽  
Vol 23 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Jianwen Liang ◽  
Hao Luo ◽  
Vincent W Lee

Sign in / Sign up

Export Citation Format

Share Document