Time-lapse seismic analysis of pressure depletion in the Southern Gas Basin

2006 ◽  
Vol 54 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Stephen A. Hall ◽  
Colin MacBeth ◽  
Jan Stammeijer ◽  
Mark Omerod
2003 ◽  
Author(s):  
Stephen A. Hall ◽  
Colin MacBeth ◽  
Jan Stammeijer ◽  
Mark Omerod

2020 ◽  
Vol 224 (3) ◽  
pp. 1670-1683
Author(s):  
Liming Zhao ◽  
Genyang Tang ◽  
Chao Sun ◽  
Jianguo Zhao ◽  
Shangxu Wang

SUMMARY We conducted stress–strain oscillation experiments on dry and partially oil-saturated Fontainebleau sandstone samples over the 1–2000 Hz band at different confining pressures to investigate the wave-induced fluid flow (WIFF) at mesoscopic and microscopic scales and their interaction. Three tested rock samples have similar porosity between 6 and 7 per cent and were partially saturated to different degrees with different oils. The measurement results exhibit a single or two attenuation peaks that are affected by the saturation degree, oil viscosity and confining pressure. One peak, exhibited by all samples, shifts to lower frequencies with increasing pressure, and is mainly attributed to grain contact- or microcrack-related squirt flow based on modelling of its characteristics and comparison with other experiment results for sandstones. The other peak is present at smaller frequencies and shifts to higher frequencies as the confining pressure increases, showing an opposite pressure dependence. This contrast is interpreted as the result of fluid flow patterns at different scales. We developed a dual-scale fluid flow model by incorporating the squirt flow effect into the patchy saturation model, which accounts for the interaction of WIFFs at microscopic and mesoscopic scales. This model provides a reasonable interpretation of the measurement results. Our broad-frequency-band measurements give physical evidence of WIFFs co-existing at two different scales, and combining with modelling results, it suggests that the WIFF mechanisms, related to pore microstructure and fluid distribution, interplay with each other and jointly control seismic attenuation and dispersion at reservoir conditions. These observations and modelling results are useful for quantitative seismic interpretation and reservoir characterization, specifically they have potential applications in time-lapse seismic analysis, fluid prediction and reservoir monitoring.


Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. B9-B21
Author(s):  
Filipe Borges ◽  
Martin Landrø ◽  
Kenneth Duffaut

On 7 May 2001, a seismic event occurred in the southern North Sea in the vicinity of the Ekofisk platform area. Analysis of seismological recordings of this event indicated that the epicenter is likely within the northern part of the field and its hypocenter lies in the shallow sedimentary layer. Further investigation in this same area revealed a small seabed uplift and identified an unintentional water injection in the overburden. The injection presumably caused the seabed uplift in addition to stress changes in the overburden. To better understand the consequences of this water injection, we analyze marine seismic data acquired before and after the seismological event. The 4D analysis reveals a clear traveltime shift close to the injection well, as well as a weak amplitude difference. We find that these measured time shifts correspond reasonably well with modeled time shifts based on a simple geomechanical model. The modeling also correlates well with the observed bathymetry changes at the seabed and with global positioning system measurements at the platforms. Although no explicit amplitude sign of the seismic event could be detected in the seismic data, the modeled stress changes, combined with the effect of decades of production-induced reservoir compaction, suggest a source mechanism for the far-field seismological recordings of the May 7th event.


1996 ◽  
Vol 2 (4) ◽  
pp. 361-372 ◽  
Author(s):  
G. F. T. Watts ◽  
D. Jizba ◽  
D. E. Gawith ◽  
P. Gutteridge

Geophysics ◽  
2000 ◽  
Vol 65 (2) ◽  
pp. 351-367 ◽  
Author(s):  
Tucker Burkhart ◽  
Andrew R. Hoover ◽  
Peter B. Flemings

Two seismic surveys acquired over South Timbalier Block 295 field (offshore Louisiana) record significant differences in amplitude that are correlated to hydrocarbon production at multiple reservoir levels. The K8 sand, a solution‐gas‐drive reservoir, shows increases in seismic amplitude associated with gas exsolution. The K40 sand, a water‐drive reservoir, shows decreases in seismic amplitude associated with increases in water saturation. A methodology is presented to optimize the correlation between two seismic surveys after they have been individually processed (poststack) This methodology includes rebinning, crosscorrelation, band‐pass filtering, and cross‐equalization. A statistical approach is developed to characterize the correlation between the seismic surveys. This statistical analysis is used to discriminate seismic amplitude differences that record change in rock and fluid properties from those that could be the result of miscorrelation of the seismic data. Time‐lapse seismic analysis provides an important new approach to imaging hydrocarbon production; it may be used to improve reservoir characterization and guide production decisions.


2005 ◽  
Vol 24 (12) ◽  
pp. 1226-1232 ◽  
Author(s):  
M. Landrø ◽  
P. Digranes ◽  
L. K. Strønen

2021 ◽  
pp. 1-59
Author(s):  
Marwa Hussein ◽  
Robert R. Stewart ◽  
Deborah Sacrey ◽  
David H. Johnston ◽  
Jonny Wu

Time-lapse (4D) seismic analysis plays a vital role in reservoir management and reservoir simulation model updates. However, 4D seismic data are subject to interference and tuning effects. Being able to resolve and monitor thin reservoirs of different quality can aid in optimizing infill drilling or locating bypassed hydrocarbons. Using 4D seismic data from the Maui field in the offshore Taranaki basin of New Zealand, we generate typical seismic attributes sensitive to reservoir thickness and rock properties. We find that spectral instantaneous attributes extracted from time-lapse seismic data illuminate more detailed reservoir features compared to those same attributes computed on broadband seismic data. We develop an unsupervised machine learning workflow that enables us to combine eight spectral instantaneous seismic attributes into single classification volumes for the baseline and monitor surveys using self-organizing maps (SOM). Changes in the SOM natural clusters between the baseline and monitor surveys suggest production-related changes that are caused primarily by water replacing gas as the reservoir is being swept under a strong water drive. The classification volumes also facilitate monitoring water saturation changes within thin reservoirs (ranging from very good to poor quality) as well as illuminating thin baffles. Thus, these SOM classification volumes show internal reservoir heterogeneity that can be incorporated into reservoir simulation models. Using meaningful SOM clusters, geobodies are generated for the baseline and monitor SOM classifications. The recoverable gas reserves for those geobodies are then computed and compared to production data. The SOM classifications of the Maui 4D seismic data seems to be sensitive to water saturation change and subtle pressure depletions due to gas production under a strong water drive.


Sign in / Sign up

Export Citation Format

Share Document