Time‐lapse (4-D) seismic monitoring of primary production of turbidite reservoirs at South Timbalier Block 295, offshore Louisiana, Gulf of Mexico

Geophysics ◽  
2000 ◽  
Vol 65 (2) ◽  
pp. 351-367 ◽  
Author(s):  
Tucker Burkhart ◽  
Andrew R. Hoover ◽  
Peter B. Flemings

Two seismic surveys acquired over South Timbalier Block 295 field (offshore Louisiana) record significant differences in amplitude that are correlated to hydrocarbon production at multiple reservoir levels. The K8 sand, a solution‐gas‐drive reservoir, shows increases in seismic amplitude associated with gas exsolution. The K40 sand, a water‐drive reservoir, shows decreases in seismic amplitude associated with increases in water saturation. A methodology is presented to optimize the correlation between two seismic surveys after they have been individually processed (poststack) This methodology includes rebinning, crosscorrelation, band‐pass filtering, and cross‐equalization. A statistical approach is developed to characterize the correlation between the seismic surveys. This statistical analysis is used to discriminate seismic amplitude differences that record change in rock and fluid properties from those that could be the result of miscorrelation of the seismic data. Time‐lapse seismic analysis provides an important new approach to imaging hydrocarbon production; it may be used to improve reservoir characterization and guide production decisions.

2020 ◽  
Vol 224 (3) ◽  
pp. 1670-1683
Author(s):  
Liming Zhao ◽  
Genyang Tang ◽  
Chao Sun ◽  
Jianguo Zhao ◽  
Shangxu Wang

SUMMARY We conducted stress–strain oscillation experiments on dry and partially oil-saturated Fontainebleau sandstone samples over the 1–2000 Hz band at different confining pressures to investigate the wave-induced fluid flow (WIFF) at mesoscopic and microscopic scales and their interaction. Three tested rock samples have similar porosity between 6 and 7 per cent and were partially saturated to different degrees with different oils. The measurement results exhibit a single or two attenuation peaks that are affected by the saturation degree, oil viscosity and confining pressure. One peak, exhibited by all samples, shifts to lower frequencies with increasing pressure, and is mainly attributed to grain contact- or microcrack-related squirt flow based on modelling of its characteristics and comparison with other experiment results for sandstones. The other peak is present at smaller frequencies and shifts to higher frequencies as the confining pressure increases, showing an opposite pressure dependence. This contrast is interpreted as the result of fluid flow patterns at different scales. We developed a dual-scale fluid flow model by incorporating the squirt flow effect into the patchy saturation model, which accounts for the interaction of WIFFs at microscopic and mesoscopic scales. This model provides a reasonable interpretation of the measurement results. Our broad-frequency-band measurements give physical evidence of WIFFs co-existing at two different scales, and combining with modelling results, it suggests that the WIFF mechanisms, related to pore microstructure and fluid distribution, interplay with each other and jointly control seismic attenuation and dispersion at reservoir conditions. These observations and modelling results are useful for quantitative seismic interpretation and reservoir characterization, specifically they have potential applications in time-lapse seismic analysis, fluid prediction and reservoir monitoring.


2013 ◽  
Vol 1 (2) ◽  
pp. T157-T166 ◽  
Author(s):  
Julie Ditkof ◽  
Eva Caspari ◽  
Roman Pevzner ◽  
Milovan Urosevic ◽  
Timothy A. Meckel ◽  
...  

The Cranfield field in southwest Mississippi has been under continuous [Formula: see text] injection by Denbury Onshore LLC since 2008. Two 3D seismic surveys were collected in 2007 and 2010. An initial 4D seismic response was characterized after three years of injection, where more than three million tons of [Formula: see text] remain in the subsurface. This interpretation showed coherent seismic amplitude anomalies in some areas that received large amounts of [Formula: see text] but not in others. To understand these effects better, we performed Gassmann substitution modeling at two wells: the 31F-2 observation well and the 28-1 injection well. We aimed to predict a postinjection saturation curve and acoustic impedance (AI) change through the reservoir. Seismic volumes were cross-equalized, well ties to seismic were performed, and AI inversions were subsequently carried out. Inversion results showed that the change in AI is higher than Gassmann substitution predicted for the 28-1 injection well. The time-lapse AI difference predicted by the inversion is similar in magnitude to the difference inferred from a time delay along a marker horizon below the reservoir.


Geophysics ◽  
2003 ◽  
Vol 68 (5) ◽  
pp. 1470-1484 ◽  
Author(s):  
Alastair M. Swanston ◽  
Peter B. Flemings ◽  
Joseph T. Comisky ◽  
Kevin D. Best

Two orthogonal preproduction seismic surveys and a regional seismic survey acquired after eight years of production from the Bullwinkle field (Green Canyon 65, Gulf of Mexico) reveal extraordinary seismic differences attributed to production‐induced changes in rock and fluid properties. Amplitude reduction (of up to 71%) occurs where production and log data show that water has replaced hydrocarbons as the oil–water contact moved upward. Separate normalizations of these surveys demonstrate that time‐lapse results are improved by using seismic surveys acquired in similar orientations; also, clearer difference images are obtained from comparing lower‐frequency data sets. Superior stratigraphic illumination in the dip‐oriented survey relative to the strike‐oriented surveys results in nongeological amplitude differences. This documents the danger of using dissimilar baseline and monitor surveys for time‐lapse studies.


2021 ◽  
pp. 1-59
Author(s):  
Marwa Hussein ◽  
Robert R. Stewart ◽  
Deborah Sacrey ◽  
David H. Johnston ◽  
Jonny Wu

Time-lapse (4D) seismic analysis plays a vital role in reservoir management and reservoir simulation model updates. However, 4D seismic data are subject to interference and tuning effects. Being able to resolve and monitor thin reservoirs of different quality can aid in optimizing infill drilling or locating bypassed hydrocarbons. Using 4D seismic data from the Maui field in the offshore Taranaki basin of New Zealand, we generate typical seismic attributes sensitive to reservoir thickness and rock properties. We find that spectral instantaneous attributes extracted from time-lapse seismic data illuminate more detailed reservoir features compared to those same attributes computed on broadband seismic data. We develop an unsupervised machine learning workflow that enables us to combine eight spectral instantaneous seismic attributes into single classification volumes for the baseline and monitor surveys using self-organizing maps (SOM). Changes in the SOM natural clusters between the baseline and monitor surveys suggest production-related changes that are caused primarily by water replacing gas as the reservoir is being swept under a strong water drive. The classification volumes also facilitate monitoring water saturation changes within thin reservoirs (ranging from very good to poor quality) as well as illuminating thin baffles. Thus, these SOM classification volumes show internal reservoir heterogeneity that can be incorporated into reservoir simulation models. Using meaningful SOM clusters, geobodies are generated for the baseline and monitor SOM classifications. The recoverable gas reserves for those geobodies are then computed and compared to production data. The SOM classifications of the Maui 4D seismic data seems to be sensitive to water saturation change and subtle pressure depletions due to gas production under a strong water drive.


2021 ◽  
Vol 5 (2) ◽  
pp. 47-52
Author(s):  
Emmanuel Aniwetalu ◽  
Akudo Ernest ◽  
Juliet Ilechukwu ◽  
Okechukwu Ikegwuonu ◽  
Uzochukwu Omoja

The analysis of 3-D and time-lapse seismic data in Isomu Field has offered the dynamic characterization of the reservoir changes. The changes were analyzed using fluid substitution and seismic velocity models. The results of the initial porosity of the reservoirs was 29.50% with water saturation value of12%.The oil and gas maintained saturation values of 40% and 48% with average compressional and shear wave velocities of 2905m/s and 1634m/s respectfully. However, in fluid substitution modelling, the results reflect a change in fluid properties where average gas and oil saturation assume a new status of 34% and 24% which indicates a decrease by 14% and 16% respectively. The average water saturation increases by 30% with an average value of 42%. The decrease in hydrocarbon saturation and increase in formation water influence the porosity. Thus, porosity decreased by 4.16% which probably arose from the closure of the aspect ratio crack due to pressure increase.


2000 ◽  
Vol 3 (01) ◽  
pp. 88-97 ◽  
Author(s):  
R.D. Benson ◽  
T.L. Davis

Summary This article presents the results of a multidisciplinary, four-dimensional (4D) (time-lapse), three-component (3C) (multicomponent) seismic study of a CO2 injection project in vacuum field, New Mexico. The ability to sense bulk rock/fluid properties with 4D, 3C seismology enables characterization of the most important transport property of a reservoir, namely, permeability. Because of the high volume resolution of the 4D, 3C seismology, we can monitor the sweep efficiency of a production process to see if reserves are bypassed by channeling around lower permeability parts of the reservoir and the rate at which the channeling occurs. In doing so, we can change production processes to sweep the reservoir more efficiently. Introduction Improving reservoir performance and enhancing hydrocarbon recovery while reducing environmental impact are critical to the future of the petroleum industry. To do this, it must be possible to characterize reservoir parameters including fluid properties and their changes with time, i.e., dynamic reservoir characterization. The objectives of our research arerepeated acquisition of a three-dimensional (3D), three-component (3C) seismic survey;demonstrate the ability of 3D, 3C, and four-dimensional (4D), 3C seismology to detect and monitor rock/fluid property change associated with a production process;incorporate geological, petrophysical, petroleum engineering, and other geophysical studies;refine the reservoir model and recommend procedures for scaling up from a pilot injection program to partial field flood to achieve maximum sweep efficiency and minimize bypassed reservoir zones;link bulk rock/fluid property variation monitored by time-lapse multicomponent (4D, 3C) seismic surveying to dynamic attributes of the reservoir including permeability, fluids, and flow characterization. Three-dimensional, 3C seismology involves seismic data acquisition in three orientations at each receiver location—two orthogonal horizontal and one vertical. When three source components are used, nine times the amount of data of a conventional P-wave 3D survey can be recorded. Horizontal components of source and receiver displacements enable shear- (S-) wave recording; this is a powerful complement to vertical P-wave recording. Three-dimensional, 3C seismic surveys provide significantly more information about the rock/fluid properties of a reservoir than can be achieved from conventional P-wave seismic surveys alone. By combining P- and S-wave recording, the seismic ability to determine rock/fluid property changes in the subsurface is increased. Seismic wave propagation includes travel time, reflectivity, and the effects of anisotropy and attenuation. In-situ stress orientation and relative magnitudes can be derived from seismic anisotropy. Rock/fluid properties, including lithology and porosity, may be obtained from comparative travel times or velocities of P and S waves. Other rock/fluid properties, including permeability, may be determined from comparative P and S anisotropy, travel time, reflectivity, and attenuation measurements. By combining P- and S-wave recording, seismic wave propagation characteristics can be transformed into reservoir parameters. Introducing time as the "fourth dimension," new time-lapse (4D), 3C seismology is a tool to monitor production processes and to determine reservoir property variations under changing conditions. Using 4D, 3C seismic monitoring as an integral part of dynamic reservoir characterization, refinements can be made to production processes to improve reservoir hydrocarbon recovery. VP/VS ratios for both the fast S1 shear component and slow S2 shear component may provide a tool for separating bulk rock changes due to fluid property variations from bulk rock changes due to effective stress variations. Changes in shear wave anisotropy may reflect varying concentrations of open fractures and low aspect ratio pore structure in both a spatial and temporal sense across the reservoir. The permeability of a formation, or the connectivity of the pore space, will be the target in 4D, 3C seismology. Refinements made to reservoir characterization techniques and their applications, now extending into the fourth dimension, are an important new area of research. Benefits of this research will include improved reservoir characterization and correlative increased hydrocarbon recovery and reduction in operating costs through improved reservoir management. Geologic Setting Since early Permian time, the general evolution of the portion of the Permian Basin which includes vacuum field is that of a progressively shallowing-upward carbonate platform. Aggrading and prograding cycles represent, respectively, the results of high stand and still stand sea levels. At the shelf edge these platform carbonates typically grade into reef-type deposits such as the Abo, Goat Seep, and Capitan formations. The San Andres is an exception; no reef-like rocks have been detected. Beyond the shelf edge, in the Delaware basin, clastic rocks, especially siliciclastics, were deposited during a lowstand sea level. Vacuum field is located on a large anticlinal structure that plunges slightly to the east-northeast. The San Andres and Grayburg formations correspond to the rim of a broad carbonate shelf province to the north and northwest, northwest shelf, and of a deeper intracratonic basin, Delaware basin, on the southeast and east.1 The overall area including the Midland basin, northern and eastern shelves, and central basin platform are part of a major restricted intracratonic basin which existed during Permian time. West Texas and southeast New Mexico were in the low latitudes throughout the late Paleozoic period, making them an ideal location for carbonate sedimentation. As a consequence of this tropical environment, broad carbonate shelves were established on the margins of the Delaware and Midland basins.2


2012 ◽  
Vol 6 (4) ◽  
pp. 909-922 ◽  
Author(s):  
A. D. Booth ◽  
R. A. Clark ◽  
B. Kulessa ◽  
T. Murray ◽  
J. Carter ◽  
...  

Abstract. Seismic amplitude-versus-angle (AVA) methods are a powerful means of quantifying the physical properties of subglacial material, but serious interpretative errors can arise when AVA is measured over a thinly-layered substrate. A substrate layer with a thickness less than 1/4 of the seismic wavelength, λ, is considered "thin", and reflections from its bounding interfaces superpose and appear in seismic data as a single reflection event. AVA interpretation of subglacial till can be vulnerable to such thin-layer effects, since a lodged (non-deforming) till can be overlain by a thin (metre-scale) cap of dilatant (deforming) till. We assess the potential for misinterpretation by simulating seismic data for a stratified subglacial till unit, with an upper dilatant layer between 0.1–5.0 m thick (λ / 120 to > λ / 4, with λ = 12 m). For dilatant layers less than λ / 6 thick, conventional AVA analysis yields acoustic impedance and Poisson's ratio that indicate contradictory water saturation. A thin-layer interpretation strategy is proposed, that accurately characterises the model properties of the till unit. The method is applied to example seismic AVA data from Russell Glacier, West Greenland, in which characteristics of thin-layer responses are evident. A subglacial till deposit is interpreted, having lodged till (acoustic impedance = 4.26±0.59 × 106 kg m−2 s−1) underlying a water-saturated dilatant till layer (thickness < 2 m, Poisson's ratio ~ 0.5). Since thin-layer considerations offer a greater degree of complexity in an AVA interpretation, and potentially avoid misinterpretations, they are a valuable aspect of quantitative seismic analysis, particularly for characterising till units.


GeoArabia ◽  
2006 ◽  
Vol 11 (4) ◽  
pp. 63-72
Author(s):  
Aldo L. Vesnaver ◽  
Michael K. Broadhead ◽  
Isidore J. Bellaci

ABSTRACT The Central Arabian field of this study is part of a trend of oil fields primarily producing from Permian sandstone reservoirs. The most productive zone, in the upper part of the reservoir, is characterized with good porosity and permeability, an aeolian depositional environment, and producing zones that tend to be laterally and vertically heterogeneous. The reservoir sandstone lenses are interspersed with low porosity/permeability siltstones. We examined the feasibility of watersaturation surveillance by geophysical means that could help to better produce the field and unravel certain production challenges; hence, time-lapse seismic (4-D) was considered. Using modeling, we argue that time-lapse seismic is a low probability candidate for successful reservoir monitoring of water saturation in this field. We also discuss other techniques that are potential alternatives, such as micro-seismicity, magnetotellurics and borehole gravity, comparing the relative merits and limitations of these methods as applicable to this field. Finally, we conclude with the potential impact of improved reservoir characterization, via integration of more seismic information into the reservoir model.


SPE Journal ◽  
2012 ◽  
Vol 17 (01) ◽  
pp. 53-69 ◽  
Author(s):  
M.D.. D. Jackson ◽  
M.Y.. Y. Gulamali ◽  
E.. Leinov ◽  
J.H.. H. Saunders ◽  
J.. Vinogradov

Summary Spontaneous potential (SP) is routinely measured using wireline tools during reservoir characterization. However, SP signals are also generated during hydrocarbon production, in response to gradients in the water-phase pressure (relative to hydrostatic), chemical composition, and temperature. We use numerical modeling to investigate the likely magnitude of the SP in an oil reservoir during production, and suggest that measurements of SP, using electrodes permanently installed downhole, could be used to detect and monitor water encroaching on a well while it is several tens to hundreds of meters away. We simulate the SP generated during production from a single vertical well, with pressure support provided by water injection. We vary the production rate, and the temperature and salinity of the injected water, to vary the contribution of the different components of the SP signal. We also vary the values of the so-called "coupling coefficients," which relate gradients in fluid potential, salinity, and temperature to gradients in electrical potential. The values of these coupling coefficients at reservoir conditions are poorly constrained. We find that the magnitude of the SP can be large (up to hundreds of mV) and peaks at the location of the moving water front, where there are steep gradients in water saturation and salinity. The signal decays with distance from the front, typically over several tens to hundreds of meters; consequently, the encroaching water can be detected and monitored before it arrives at the production well. Before water breakthrough, the SP at the well is dominated by the electrokinetic and electrochemical components arising from gradients in fluid potential and salinity; thermoelectric potentials only become significant after water breakthrough, because the temperature change associated with the injected water lags behind the water front. The shape of the SP signal measured along the well reflects the geometry of the encroaching waterfront. Our results suggest that SP monitoring during production, using permanently installed downhole electrodes, is a promising method to image moving water fronts. Larger signals will be obtained in low-permeability reservoirs produced at high rate, saturated with formation brine of low salinity, or with brine of a very different salinity from that injected.


Sign in / Sign up

Export Citation Format

Share Document