scholarly journals Calcium-binding proteins in skeletal muscles of the mdx mice: potential role in the pathogenesis of Duchenne muscular dystrophy

2010 ◽  
Vol 91 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Adriana Pertille ◽  
Candida Luiza Tonizza de Carvalho ◽  
Cintia Yuri Matsumura ◽  
Humberto Santo Neto ◽  
Maria Julia Marques
1998 ◽  
Vol 111 (13) ◽  
pp. 1801-1811 ◽  
Author(s):  
J.D. Porter ◽  
J.A. Rafael ◽  
R.J. Ragusa ◽  
J.K. Brueckner ◽  
J.I. Trickett ◽  
...  

The extraocular muscles are one of few skeletal muscles that are structurally and functionally intact in Duchenne muscular dystrophy. Little is known about the mechanisms responsible for differential sparing or targeting of muscle groups in neuromuscular disease. One hypothesis is that constitutive or adaptive properties of the unique extraocular muscle phenotype may underlie their protection in dystrophinopathy. We assessed the status of extraocular muscles in the mdx mouse model of muscular dystrophy. Mice showed mild pathology in accessory extraocular muscles, but no signs of pathology were evident in the principal extraocular muscles at any age. By immunoblotting, the extraocular muscles of mdx mice exhibited increased levels of a dystrophin analog, dystrophin-related protein or utrophin. These data suggest, but do not provide mechanistic evidence, that utrophin mediates eye muscle protection. To examine a potential causal relationship, knockout mouse models were used to determine whether eye muscle sparing could be reversed. Mice lacking expression of utrophin alone, like the dystrophin-deficient mdx mouse, showed no pathological alterations in extraocular muscle. However, mice deficient in both utrophin and dystrophin exhibited severe changes in both the accessory and principal extraocular muscles, with the eye muscles affected more adversely than other skeletal muscles. Selected extraocular muscle fiber types still remained spared, suggesting the operation of an alternative mechanism for muscle sparing in these fiber types. We propose that an endogenous upregulation of utrophin is mechanistic in protecting extraocular muscle in dystrophinopathy. Moreover, data lend support to the hypothesis that interventions designed to increase utrophin levels may ameliorate the pathology in other skeletal muscles in Duchenne muscular dystrophy.


Author(s):  
Sylvie Berthier ◽  
Athan Baillet ◽  
Marie-Helene Paclet ◽  
Philippe Gaudin ◽  
Francoise Morel

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 481
Author(s):  
Paulina Podkalicka ◽  
Olga Mucha ◽  
Katarzyna Kaziród ◽  
Iwona Bronisz-Budzyńska ◽  
Sophie Ostrowska-Paton ◽  
...  

Duchenne muscular dystrophy (DMD), caused by a lack of functional dystrophin, is characterized by progressive muscle degeneration. Interestingly, dystrophin is also expressed in endothelial cells (ECs), and insufficient angiogenesis has already been hypothesized to contribute to DMD pathology, however, its status in mdx mice, a model of DMD, is still not fully clear. Our study aimed to reveal angiogenesis-related alterations in skeletal muscles of mdx mice compared to wild-type (WT) counterparts. By investigating 6- and 12-week-old mice, we sought to verify if those changes are age-dependent. We utilized a broad spectrum of methods ranging from gene expression analysis, flow cytometry, and immunofluorescence imaging to determine the level of angiogenic markers and to assess muscle blood vessel abundance. Finally, we implemented the hindlimb ischemia (HLI) model, more biologically relevant in the context of functional studies evaluating angiogenesis/arteriogenesis processes. We demonstrated that both 6- and 12-week-old dystrophic mice exhibited dysregulation of several angiogenic factors, including decreased vascular endothelial growth factor A (VEGF) in different muscle types. Nonetheless, in younger, 6-week-old mdx animals, neither the abundance of CD31+α-SMA+ double-positive blood vessels nor basal blood flow and its restoration after HLI was affected. In 12-week-old mdx mice, although a higher number of CD31+α-SMA+ double-positive blood vessels and an increased percentage of skeletal muscle ECs were found, the abundance of pericytes was diminished, and blood flow was reduced. Moreover, impeded perfusion recovery after HLI associated with a blunted inflammatory and regenerative response was evident in 12-week-old dystrophic mice. Hence, our results reinforce the hypothesis of age-dependent angiogenic dysfunction in dystrophic mice. In conclusion, we suggest that older mdx mice constitute an appropriate model for preclinical studies evaluating the effectiveness of vascular-based therapies aimed at the restoration of functional angiogenesis to mitigate DMD severity.


2021 ◽  
pp. 1-5
Author(s):  
Gian Luca Vita ◽  
Luisa Politano ◽  
Angela Berardinelli ◽  
Giuseppe Vita

Background: Increasing evidence suggests that Duchenne muscular dystrophy (DMD) gene is involved in the occurrence of different types of cancer. Moreover, development of sarcomas was reported in mdx mice, the murine model of DMD, in older age. So far, nine isolated DMD patients were reported with concomitant cancer, four of whom with rhabdomyosarcoma (RMS), but no systematic investigation was performed about the true incidence of cancer in DMD. Methods: All members of the Italian Association of Myology were asked about the occurrence of cancer in their DMD patients in the last 30 years. Results: Four DMD patients with cancer were reported after checking 2455 medical records. One developed brain tumour at the age of 35 years. Two patients had alveolar RMS at 14 and 17 years of age. The fourth patient had a benign enchondroma when 11-year-old. Conclusion: Prevalence of cancer in general in the Italian DMD patients does not seem to be different from that in the general population with the same age range. Although the small numbers herein presented do not allow definitive conclusion, the frequent occurrence of RMS in DMD patients raises an alert for basic researchers and clinicians. The role of DMD gene in cancer merits further investigations.


Sign in / Sign up

Export Citation Format

Share Document