Community effects of invasive macrophyte control: role of invasive plant abundance and habitat complexity

2010 ◽  
Vol 47 (2) ◽  
pp. 318-328 ◽  
Author(s):  
Katya E. Kovalenko ◽  
Eric D. Dibble ◽  
Jeremy G. Slade
2021 ◽  
Author(s):  
Johanna Yletyinen ◽  
George L. W. Perry ◽  
Olivia R. Burge ◽  
Norman W. H. Mason ◽  
Philip Stahlmann‐Brown

2017 ◽  
Vol 4 (8) ◽  
pp. 170021 ◽  
Author(s):  
Megan L. Smith ◽  
Brice P. Noonan ◽  
Timothy J. Colston

Ethiopia is a world biodiversity hotspot and harbours levels of biotic endemism unmatched in the Horn of Africa, largely due to topographic—and thus habitat—complexity, which results from a very active geological and climatic history. Among Ethiopian vertebrate fauna, amphibians harbour the highest levels of endemism, making amphibians a compelling system for the exploration of the impacts of Ethiopia's complex abiotic history on biotic diversification. Grass frogs of the genus Ptychadena are notably diverse in Ethiopia, where they have undergone an evolutionary radiation. We used molecular data and expanded taxon sampling to test for cryptic diversity and to explore diversification patterns in both the highland radiation and two widespread lowland Ptychadena . Species delimitation results support the presence of nine highland species and four lowland species in our dataset, and divergence dating suggests that both geologic events and climatic fluctuations played a complex and confounded role in the diversification of Ptychadena in Ethiopia. We rectify the taxonomy of the endemic P. neumanni species complex, elevating one formally synonymized name and describing three novel taxa. Finally, we describe two novel lowland Ptychadena species that occur in Ethiopia and may be more broadly distributed.


2020 ◽  
Vol 22 (7) ◽  
pp. 2357-2369 ◽  
Author(s):  
Laura Fernandez-Winzer ◽  
Katherine A. Berthon ◽  
Peter Entwistle ◽  
Anthony Manea ◽  
Nélida Winzer ◽  
...  

2018 ◽  
Vol 39 (1) ◽  
pp. 56
Author(s):  
Eleonora Egidi ◽  
Ashley E Franks

Recently, the role of the plant-associated mycobiome (i.e. the fungal community) in influencing the competitive success of invasive plant species has received increasing attention. Fungi act as primary drivers of the plant invasion process due to their ability to form both beneficial and detrimental relationships with terrestrial plant species. Here we review the role of the plant mycobiome in promoting or inhibiting plant species invasion into foreign ecosystems. Moreover, the potential to exploit these relationships for invasive plant control and restoration of native communities is discussed. Incorporating fungal community ecology into invasion and restoration biology will aid in the management and control of invasive plant species in Australia.


Diversity ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 40 ◽  
Author(s):  
Nathan E. Harms

The ability to invade communities in a variety of habitats (e.g., along a depth gradient) may facilitate establishment and spread of invasive plants, but how multiple lineages of a species perform under varying conditions is understudied. A series of greenhouse common garden experiments were conducted in which six diploid and four triploid populations of the aquatic invasive plant Butomus umbellatus L. (Butomaceae) were grown in submersed or emergent conditions, in monoculture or in a multispecies community, to compare establishment and productivity of cytotypes under competition. Diploid biomass overall was 12 times higher than triploids in the submersed experiment and three times higher in the emergent experiment. Diploid shoot:root ratio was double that of triploid plants in submersed conditions overall, and double in emergent conditions in monoculture. Relative interaction intensities (RII) indicated that triploid plants were sixteen times more negatively impacted by competition under submersed conditions but diploid plants were twice as impacted under emergent conditions. Recipient communities were similarly negatively impacted by B. umbellatus cytotypes. This study supports the idea that diploid and triploid B. umbellatus plants are equally capable of invading emergent communities, but that diploid plants may be better adapted for invading in submersed habitats. However, consistently lower shoot:root ratios in both monoculture and in communities suggests that triploid plants may be better-adapted competitors in the long term due to increased resource allocation to roots. This represents the first examination into the role of cytotype and habitat on competitive interactions of B. umbellatus.


Sign in / Sign up

Export Citation Format

Share Document