scholarly journals The role of climatic and geological events in generating diversity in Ethiopian grass frogs (genus Ptychadena )

2017 ◽  
Vol 4 (8) ◽  
pp. 170021 ◽  
Author(s):  
Megan L. Smith ◽  
Brice P. Noonan ◽  
Timothy J. Colston

Ethiopia is a world biodiversity hotspot and harbours levels of biotic endemism unmatched in the Horn of Africa, largely due to topographic—and thus habitat—complexity, which results from a very active geological and climatic history. Among Ethiopian vertebrate fauna, amphibians harbour the highest levels of endemism, making amphibians a compelling system for the exploration of the impacts of Ethiopia's complex abiotic history on biotic diversification. Grass frogs of the genus Ptychadena are notably diverse in Ethiopia, where they have undergone an evolutionary radiation. We used molecular data and expanded taxon sampling to test for cryptic diversity and to explore diversification patterns in both the highland radiation and two widespread lowland Ptychadena . Species delimitation results support the presence of nine highland species and four lowland species in our dataset, and divergence dating suggests that both geologic events and climatic fluctuations played a complex and confounded role in the diversification of Ptychadena in Ethiopia. We rectify the taxonomy of the endemic P. neumanni species complex, elevating one formally synonymized name and describing three novel taxa. Finally, we describe two novel lowland Ptychadena species that occur in Ethiopia and may be more broadly distributed.

Neurosurgery ◽  
2007 ◽  
Vol 60 (5) ◽  
pp. 799-814 ◽  
Author(s):  
Bryan C. Oh ◽  
Charles Y. Liu ◽  
Michael Y. Wang ◽  
Paul G. Pagnini ◽  
Cheng Yu ◽  
...  

Abstract IN THE FIRST part of this series, we reviewed the histological, radiographic, and molecular data gathered regarding the brain parenchymal response to radiosurgery and suggested future studies that could enhance our understanding of the topic. With this article, we begin by addressing methods of potentiating the effect of radiosurgery on target lesions of the central nervous system. Much of the work on potentiating the effects of cranial radiation has been performed in the field of whole-brain radiotherapy. Data from Phase III trials evaluating the efficacy of various agents as radiosensitizers or radioenhancers in whole-brain radiotherapy are reviewed, and trials for investigating certain agents as enhancers of radiosurgery are suggested. The roles of gene therapy and nanotechnology in enhancing the therapeutic efficacy of radiosurgery are then addressed. Focus is then shifted to a discussion of strategies of protecting healthy tissue from the potentially deleterious aspects of the brain's response to radiosurgery that were presented in the first article of this series. Finally, comments are made regarding the role of neural progenitor or stem cells in the repair of radiation-induced brain injury after radiosurgery. The importance of both the role of the extracellular matrix and properly directed axonal regrowth leading to appropriate target reinnervation is highlighted.


Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 430 ◽  
Author(s):  
Miroslav Glasa ◽  
Katarína Šoltys ◽  
Lukáš Predajňa ◽  
Nina Sihelská ◽  
Slavomíra Nováková ◽  
...  

In recent years, the accumulated molecular data of Turnip mosaic virus (TuMV) isolates from various hosts originating from different parts of the world considerably helped to understand the genetic complexity and evolutionary history of the virus. In this work, four complete TuMV genomes (HC9, PK1, MS04, MS15) were characterised from naturally infected cultivated and wild-growing Papaver spp., hosts from which only very scarce data were available previously. Phylogenetic analyses showed the affiliation of Slovak Papaver isolates to the world-B and basal-B groups. The PK1 isolate showed a novel intra-lineage recombination pattern, further confirming the important role of recombination in the shaping of TuMV genetic diversity. Biological assays indicated that the intensity of symptoms in experimentally inoculated oilseed poppy are correlated to TuMV accumulation level in leaves. This is the first report of TuMV in poppy plants in Slovakia.


Science ◽  
2021 ◽  
Vol 373 (6551) ◽  
pp. 226-231 ◽  
Author(s):  
Yasuka Toda ◽  
Meng-Ching Ko ◽  
Qiaoyi Liang ◽  
Eliot T. Miller ◽  
Alejandro Rico-Guevara ◽  
...  

Early events in the evolutionary history of a clade can shape the sensory systems of descendant lineages. Although the avian ancestor may not have had a sweet receptor, the widespread incidence of nectar-feeding birds suggests multiple acquisitions of sugar detection. In this study, we identify a single early sensory shift of the umami receptor (the T1R1-T1R3 heterodimer) that conferred sweet-sensing abilities in songbirds, a large evolutionary radiation containing nearly half of all living birds. We demonstrate sugar responses across species with diverse diets, uncover critical sites underlying carbohydrate detection, and identify the molecular basis of sensory convergence between songbirds and nectar-specialist hummingbirds. This early shift shaped the sensory biology of an entire radiation, emphasizing the role of contingency and providing an example of the genetic basis of convergence in avian evolution.


2019 ◽  
Vol 221 ◽  
pp. 210-224 ◽  
Author(s):  
Temesgen Alemayehu Abera ◽  
Janne Heiskanen ◽  
Petri Pellikka ◽  
Miina Rautiainen ◽  
Eduardo Eiji Maeda

2006 ◽  
Vol 29 (1) ◽  
pp. 55-80
Author(s):  
Jere H Lipps

The major features of protist evolution are fraught with controversies, problems and few answers, especially in early Earth history. In general they are based on molecular data and fossil evidence that respectively provide a scaffold and details of eukaryotic phylogenetic and ecologic histories. 1. Their origin, inferred from molecular sequences, occurred very early (>;3Ga). They are a chimera of different symbiont-derived organelles, including possibly the nucleus. 2. The initial diversification of eukaryotes may have occurred early in geologic time. Six supergroups exist today, each with fossils known from the Proterozoic and Phanerozoic. 3. Sex, considered an important development, may have been inherited from bacteria. 4. Precambrian protists were largely pelagic cyst-bearing taxa, but benthic forms were probably quite diverse and abundant. 5. Protists gave rise to animals long before 600 Ma through the choanoflagellates, for which no fossil record exists. 6. Acritarchs and skeletonized protists radiated in the Cambrian (544-530 my). From then on, they radiated and became extinct at all the major events recorded in the metazoan fossil record. 7. Protists dominated major environments (shelves and reefs) starting with a significant radiation in the Ordovician, followed by extinctions and other radiations until most died out at the end of the Permian. 8. In the Mesozoic, new planktic protozoa and algae appeared and radiated in pelagic environments. 9. Modern protists are important at all trophic levels in the oceans and a huge number terrestrial, parasitic and symbiotic protists must have existed for much of geologic time as well. 10. The future of protists is likely in jeopardy, just like most reefal, benthic, and planktic metazoans. An urgent need to understand the role of protists in modern threatened oceans should be addressed soon.


Author(s):  
Kathryn Brown ◽  
Andrew Hansen ◽  
Robert Keane ◽  
Lisa Graumlich

Considerable debate surrounds the persistence of quaking aspen (Populus tremuloides) communities in western North America. Loss of aspen cover has been documented in several studies in various Rocky Mountain ecosystems (Loope and Gruel 1973; Romme et al. 1995; Renkin and Despain 1996; Wirth et al. 1996; Baker et al. 1997; Kay 1997; Bartos and Campbell 1998; White et al. 1998; Gallant et al. 2003). Explanations for loss of aspen include conifer encroachment, fire exclusion, herbivory, and climatic fluctuations (Loope and Gruell 1973; Mueggler 1985; Bartos et al. 1994; Romme et al. 1995; Kay 1997; White et al. 1998). However, many studies documenting aspen decline have been geographically limited or based on a small sample of subjectively chosen stands (Barnett and Stohlgren 2001; Hessl 2002; Kaye et al. 2003).


2020 ◽  
pp. 447-471
Author(s):  
Matthias Galipaud ◽  
Loïc Bollache ◽  
Clément Lagrue

Recent advances in molecular and genetic techniques have revealed tremendous hidden genetic diversity in plants and animals. Crustaceans are no exception and, in fact, present one of the highest levels of cryptic diversity among the metazoans. Beyond the importance of such discovery and its multiple implications for taxonomy and ecology, it is now timely to investigate the potential causes of cryptic diversity. This chapter reviews the theoretical and experimental literature, seeking evidences for a relationship between sexual selection and cryptic diversity in crustaceans. It proposes three scenarios for the role of sexual selection on the origin and maintenance of pre-mating isolation and genetic divergence among crustacean populations, and suggests ways to discriminate among them experimentally or using existing data. Assuming that taxonomic identification is largely based on differences in sexually selected morphological traits, it also reviews evidence for a cryptic action of sexual selection on crustacean phenotypes. Specifically, if sexual selection acts primarily on chemical, visual, or behavioral traits, it is likely that allopatric crustacean populations remain morphologically similar even when they are reproductively isolated. This review shows that the strength of sexual selection likely differs among allopatric populations but does not seem to consistently induce pre-mating isolation (e.g. as in copepods and amphipods). Research is now needed to try to identify general patterns and determine the role of sexual selection on pre-mating isolation after secondary contact between populations, through reinforcement and reproductive character displacement.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Andrea Becchimanzi ◽  
Maddalena Avolio ◽  
Hamed Bostan ◽  
Chiara Colantuono ◽  
Flora Cozzolino ◽  
...  

Abstract Background Venom is one of the most important sources of regulation factors used by parasitic Hymenoptera to redirect host physiology in favour of the developing offspring. This has stimulated a number of studies, both at functional and “omics” level, which, however, are still quite limited for ectophagous parasitoids that permanently paralyze and suppress their victims (i.e., idiobiont parasitoids). Results Here we present a combined transcriptomic and proteomic study of the venom of the generalist idiobiont wasp Bracon nigricans, an ectophagous larval parasitoid of different lepidopteran species, for which we recently described the host regulation strategy and the functional role of the venom in the induction of physiological changes in parasitized hosts. The experimental approach used led to the identification of the main components of B. nigricans venom involved in host regulation. Enzymes degrading lipids, proteins and carbohydrates are likely involved in the mobilization of storage nutrients from the fat body and may concurrently be responsible for the release of neurotoxic fatty acids inducing paralysis, and for the modulation of host immune responses. Conclusion The present work contributes to fill the gap of knowledge on venom composition in ectoparasitoid wasps, and, along with our previous physiological study on this species, provides the foundation on which to develop a functional model of host regulation, based both on physiological and molecular data. This paves the way towards a better understanding of parasitism evolution in the basal lineages of Hymenoptera and to the possible exploitation of venom as source of bioinsecticidal molecules.


2018 ◽  
Vol 19 (8) ◽  
pp. 2320 ◽  
Author(s):  
Greta Cermisoni ◽  
Alessandra Alteri ◽  
Laura Corti ◽  
Elisa Rabellotti ◽  
Enrico Papaleo ◽  
...  

Growing evidence supports a role of vitamin D (VD) in reproductive health. Vitamin D receptor (VDR) is expressed in the ovary, endometrium, and myometrium. The biological actions of VD in fertility and reproductive tissues have been investigated but mainly using animal models. Conversely, the molecular data addressing the mechanisms underlying VD action in the physiologic endometrium and in endometrial pathologies are still scant. Levels of VDR expression according to the menstrual cycle are yet to be definitively clarified, possibly being lower in the proliferative compared to the secretory phase and in mid-secretory compared to early secretory phase. Endometrial tissue also expresses the enzymes involved in the metabolism of VD. The potential anti-proliferative and anti-inflammatory effects of VD for the treatment of endometriosis have been investigated in recent years. Treatment of ectopic endometrial cells with 1,25(OH)2D3 could significantly reduce cytokine-mediated inflammatory responses. An alteration of VD metabolism in terms of increased 24-hydroxylase mRNA and protein expression has been demonstrated in endometrial cancer, albeit not consistently. The effect of the active form of the vitamin as an anti-proliferative, pro-apoptotic, anti-inflammatory, and differentiation-inducing agent has been demonstrated in various endometrial cancer cell lines.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jouko Rikkinen ◽  
David A. Grimaldi ◽  
Alexander R. Schmidt

AbstractMyxomycetes constitute a group within the Amoebozoa well known for their motile plasmodia and morphologically complex fruiting bodies. One obstacle hindering studies of myxomycete evolution is that their fossils are exceedingly rare, so evolutionary analyses of this supposedly ancient lineage of amoebozoans are restricted to extant taxa. Molecular data have significantly advanced myxomycete systematics, but the evolutionary history of individual lineages and their ecological adaptations remain unknown. Here, we report exquisitely preserved myxomycete sporocarps in amber from Myanmar, ca. 100 million years old, one of the few fossil myxomycetes, and the only definitive Mesozoic one. Six densely-arranged stalked sporocarps were engulfed in tree resin while young, with almost the entire spore mass still inside the sporotheca. All morphological features are indistinguishable from those of the modern, cosmopolitan genus Stemonitis, demonstrating that sporocarp morphology has been static since at least the mid-Cretaceous. The ability of myxomycetes to develop into dormant stages, which can last years, may account for the phenotypic stasis between living Stemonitis species and this fossil one, similar to the situation found in other organisms that have cryptobiosis. We also interpret Stemonitis morphological stasis as evidence of strong environmental selection favouring the maintenance of adaptations that promote wind dispersal.


Sign in / Sign up

Export Citation Format

Share Document