Role of male-biased dispersal in inbreeding avoidance in the grey-sided vole (Myodes rufocanus)

2008 ◽  
Vol 17 (22) ◽  
pp. 4887-4896 ◽  
Author(s):  
YASUYUKI ISHIBASHI ◽  
TAKASHI SAITOH
2017 ◽  
Author(s):  
Tara N Furstenau ◽  
Reed A Cartwright

Hermaphroditic plants experience inbreeding through both self-fertilization and bi-parental inbreeding. Therefore, many plant species have evolved either heteromorphic (morphology-based) or homomorphic (molecular-based) self-incompatibility (SI) systems. These SI systems limit extreme inbreeding through self-fertilization and, in the case of homomorphic SI systems, have the potential to limit bi-parental inbreeding, which is common when dispersal is restricted to a local region. Homomorphic SI species are prevalent across the angiosperms, and it is often assumed that the potential to reduce bi-parental inbreeding may be a factor in their success. To test this assumption, we developed a spatially-explicit, individual-based simulation of plant populations with either heteromorphic SI or one of three different types of homomorphic SI. In our simulations, we varied dispersal distance and the presence of inbreeding depression. We found that autozygosity in the homomorphic SI populations was significantly lower than in the heteromorphic SI populations and that this reduction was due to bi-parental inbreeding avoidance. As expected, the differences between the homomorphic and heteromorphic SI populations were more pronounced when seed and pollen dispersal was limited. However, levels of homozygosity and inbreeding depression between these plant populations were not different. At low dispersal, homomorphic SI populations also suffered reduced female fecundity and had smaller census population sizes. Our results suggest that bi-parental inbreeding avoidance was unlikely to be a major driver in the evolution of homomorphic SI systems.


2017 ◽  
Author(s):  
Tara N Furstenau ◽  
Reed A Cartwright

Hermaphroditic plants experience inbreeding through both self-fertilization and bi-parental inbreeding. Therefore, many plant species have evolved either heteromorphic (morphology-based) or homomorphic (molecular-based) self-incompatibility (SI) systems. These SI systems limit extreme inbreeding through self-fertilization and, in the case of homomorphic SI systems, have the potential to limit bi-parental inbreeding, which is common when dispersal is restricted to a local region. Homomorphic SI species are prevalent across the angiosperms, and it is often assumed that the potential to reduce bi-parental inbreeding may be a factor in their success. To test this assumption, we developed a spatially-explicit, individual-based simulation of plant populations with either heteromorphic SI or one of three different types of homomorphic SI. In our simulations, we varied dispersal distance and the presence of inbreeding depression. We found that autozygosity in the homomorphic SI populations was significantly lower than in the heteromorphic SI populations and that this reduction was due to bi-parental inbreeding avoidance. As expected, the differences between the homomorphic and heteromorphic SI populations were more pronounced when seed and pollen dispersal was limited. However, levels of homozygosity and inbreeding depression between these plant populations were not different. At low dispersal, homomorphic SI populations also suffered reduced female fecundity and had smaller census population sizes. Our results suggest that bi-parental inbreeding avoidance was unlikely to be a major driver in the evolution of homomorphic SI systems.


2019 ◽  
Vol 97 (1) ◽  
pp. 42-49
Author(s):  
Yueqin Yang ◽  
Yihao Zhang ◽  
Yinhua Deng ◽  
Xianfeng Yi

Although the role of frugivores in seed dispersal has attracted scientific attention, it remains unclear whether granivorous rodents can act as frugivores to interact mutualistically with fruit-producing plants, especially those bearing green fruits inconspicuous to avian frugivores. In this study, we tracked fruit removal of the tara vine (Actinidia arguta (Siebold & Zucc.) Planch. Ex Miq.) and variegated kiwi vine (Actinidia kolomikta (Rupr. & Maxim.) Maxim.) in a temperate forest and presented fruits to the granivorous rodents Siberian chipmunk (Tamias sibiricus (Laxmann, 1769)), Korean field mouse (Apodemus peninsulae (Thomas, 1907)), and gray red-backed vole (Clethrionomys rufocanus (Sundevall, 1846) = Myodes rufocanus (Sundevall, 1846)) in the laboratory to answer this question. Seeds were collected from rodent feces to see the effects of gut passage on seed germination to determine the role of granivorous rodents in endozoochory of A. arguta and A. kolomikta. We presented clear evidence of endozoochory by granivorous rodents in seed dispersal of the two Actinidia species. Rodents appeared to play an alternative role in dispersing plants bearing green fruits. Moreover, we observed increased germination rates after gut ingestion by the granivorous rodents. Our study evidenced endozoochory of granivorous rodents and provided new insight into the mutualist interactions between rodents and plant species bearing fleshy fruits containing tiny seeds. We suggest future studies pay more attention to endozoochory of rodents and establish their mutualistic relationship with fruit-bearing plants in temperate forests.


JAMA ◽  
1966 ◽  
Vol 195 (12) ◽  
pp. 1005-1009 ◽  
Author(s):  
D. J. Fernbach
Keyword(s):  

JAMA ◽  
1966 ◽  
Vol 195 (3) ◽  
pp. 167-172 ◽  
Author(s):  
T. E. Van Metre

2018 ◽  
Vol 41 ◽  
Author(s):  
Winnifred R. Louis ◽  
Craig McGarty ◽  
Emma F. Thomas ◽  
Catherine E. Amiot ◽  
Fathali M. Moghaddam

AbstractWhitehouse adapts insights from evolutionary anthropology to interpret extreme self-sacrifice through the concept of identity fusion. The model neglects the role of normative systems in shaping behaviors, especially in relation to violent extremism. In peaceful groups, increasing fusion will actually decrease extremism. Groups collectively appraise threats and opportunities, actively debate action options, and rarely choose violence toward self or others.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


2020 ◽  
Vol 43 ◽  
Author(s):  
Stefen Beeler-Duden ◽  
Meltem Yucel ◽  
Amrisha Vaish

Abstract Tomasello offers a compelling account of the emergence of humans’ sense of obligation. We suggest that more needs to be said about the role of affect in the creation of obligations. We also argue that positive emotions such as gratitude evolved to encourage individuals to fulfill cooperative obligations without the negative quality that Tomasello proposes is inherent in obligations.


2020 ◽  
Vol 43 ◽  
Author(s):  
Andrew Whiten

Abstract The authors do the field of cultural evolution a service by exploring the role of non-social cognition in human cumulative technological culture, truly neglected in comparison with socio-cognitive abilities frequently assumed to be the primary drivers. Some specifics of their delineation of the critical factors are problematic, however. I highlight recent chimpanzee–human comparative findings that should help refine such analyses.


Sign in / Sign up

Export Citation Format

Share Document