individual based simulation
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 36)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Leandro Duarte ◽  
Gabriel Nakamura ◽  
Vanderlei Debastiani ◽  
Renan Maestri ◽  
Maria Joao Veloso da Costa Ramos Pereira ◽  
...  

Ecologists often agree on the importance of macroevolution for niche-mediated distribution of biological diversity along environmental gradients. Yet, macroevolutionary diversification and dispersal in time and space generate uneven geographic distribution of phylogenetic pools, which affects the imprint let by macroevolution on local species pools. In this article we introduce an individual-based simulation approach coupled to Approximate Bayesian Computation (ABC) that allows to parameterize the adaptation rate of species niche positions along the evolution of a monophyletic lineage, and the intensity of dispersal limitation, associated with the distribution of biological diversity between assemblages potentially connected by dispersal (metacommunity). The analytical tool was implemented in an R package called mcfly. We evaluated the statistical performance of the analytical framework using simulated datasets, which confirmed the suitability of the analysis to estimate adaptation rate and dispersal limitation parameters. Further, we evaluated the role played by niche evolution and dispersal limitation on species diversity distribution of Phyllostomidae bats across the Neotropics. The framework proposed here shed light on the links between niche evolution, dispersal limitation and the distribution of biological diversity, and thereby improved our understanding of evolutionary imprints on ecological patterns. Perhaps more importantly, it offers new possibilities for solving the eco-evolutionary puzzle.


2021 ◽  
Vol 9 ◽  
Author(s):  
Roger Arditi ◽  
Yuri V. Tyutyunov ◽  
Lyudmila I. Titova ◽  
Rudolf P. Rohr ◽  
Louis-Félix Bersier

We discuss the interpretation and dimensions of the population dynamic parameters that are commonly used to quantify the strength of intraspecific and interspecific interactions. The concept of “interaction strength” is not unequivocal. Its theoretical formalization relies on the generalized Lotka–Volterra model. However, four different ways of parameterizing the model have been proposed in the literature, leading to four different definitions of the term “interaction strength.” In particular, the dimensions of these four definitions are not identical, some of these incorporating explicitly the dimension used to measure the population size. Using an individual-based simulation model as an illustration, we show that, in the latter case, the interaction strength depends implicitly on the habitat size. As a consequence, it is of crucial importance to quantify the population as a density rather than an absolute population abundance. We insist that the dimension of the interaction strength coefficient should not be overlooked and any quantitative estimation must be given with explicit units.


Author(s):  
Vanessa Tobias ◽  

In fisheries monitoring, catch is assumed to be a product of fishing intensity, catchability, and availability, where availability is defined as the number or biomass of fish present and catchability refers to the relationship between catch rate and the true population. Ecological monitoring programs use catch per unit of effort (CPUE) to standardize catch and monitor changes in fish populations; however, CPUE is proportional to the portion of the population that is vulnerable to the type of gear used in sampling, which is not necessarily the entire population. Programs often deal with this problem by assuming that catchability is constant, but if catchability is not constant, it is not possible to separate the effects of catchability and population size using monitoring data alone. This study uses individual-based simulation to separate the effects of changing environmental conditions on catchability and availability in environmental monitoring data. The simulation combines a module for sampling conditions with a module for individual fish behavior to estimate the proportion of available fish that would escape from the sample. The method is applied to the case study of the well monitored fish species Delta Smelt (Hypomesus transpacificus) in the San Francisco Estuary, where it has been hypothesized that changing water clarity may affect catchability for long-term monitoring studies. Results of this study indicate that given constraints on Delta Smelt swimming ability, it is unlikely that the apparent declines in Delta Smelt abundance are the result of changing water clarity affecting catchability.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ben B. Hui ◽  
Damien Brown ◽  
Rebecca H. Chisholm ◽  
Nicholas Geard ◽  
Jodie McVernon ◽  
...  

Abstract Background Remote Australian Aboriginal and Torres Strait Islander communities have potential to be severely impacted by COVID-19, with multiple factors predisposing to increased transmission and disease severity. Our modelling aims to inform optimal public health responses. Methods An individual-based simulation model represented SARS-CoV2 transmission in communities ranging from 100 to 3500 people, comprised of large, interconnected households. A range of strategies for case finding, quarantining of contacts, testing, and lockdown were examined, following the silent introduction of a case. Results Multiple secondary infections are likely present by the time the first case is identified. Quarantine of close contacts, defined by extended household membership, can reduce peak infection prevalence from 60 to 70% to around 10%, but subsequent waves may occur when community mixing resumes. Exit testing significantly reduces ongoing transmission. Concurrent lockdown of non-quarantined households for 14 days is highly effective for epidemic control and reduces overall testing requirements; peak prevalence of the initial outbreak can be constrained to less than 5%, and the final community attack rate to less than 10% in modelled scenarios. Lockdown also mitigates the effect of a delay in the initial response. Compliance with lockdown must be at least 80–90%, however, or epidemic control will be lost. Conclusions A SARS-CoV-2 outbreak will spread rapidly in remote communities. Prompt case detection with quarantining of extended-household contacts and a 14 day lockdown for all other residents, combined with exit testing for all, is the most effective strategy for rapid containment. Compliance is crucial, underscoring the need for community supported, culturally sensitive responses.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009301
Author(s):  
Michael Pickles ◽  
Anne Cori ◽  
William J. M. Probert ◽  
Rafael Sauter ◽  
Robert Hinch ◽  
...  

Mathematical models are powerful tools in HIV epidemiology, producing quantitative projections of key indicators such as HIV incidence and prevalence. In order to improve the accuracy of predictions, such models need to incorporate a number of behavioural and biological heterogeneities, especially those related to the sexual network within which HIV transmission occurs. An individual-based model, which explicitly models sexual partnerships, is thus often the most natural type of model to choose. In this paper we present PopART-IBM, a computationally efficient individual-based model capable of simulating 50 years of an HIV epidemic in a large, high-prevalence community in under a minute. We show how the model calibrates within a Bayesian inference framework to detailed age- and sex-stratified data from multiple sources on HIV prevalence, awareness of HIV status, ART status, and viral suppression for an HPTN 071 (PopART) study community in Zambia, and present future projections of HIV prevalence and incidence for this community in the absence of trial intervention.


Author(s):  
Vanessa Tobias

In fisheries monitoring, catch is assumed to be a product of fishing intensity, catchability, and availability, where availability is defined as the number or biomass of fish present and catchability refers to the relationship between catch rate and the true population. Ecological monitoring programs use catch per unit of effort (CPUE) to standardize catch and monitor changes in fish populations; however, CPUE is proportional to the portion of the population that is vulnerable to the type of gear that is used in sampling, which is not necessarily the entire population. Programs often deal with this problem by assuming that catchability is constant, but if catchability is not constant, it is not possible to separate the effects of catchability and population size using monitoring data alone. This study uses individual-based simulation to separate the effects of changing environmental conditions on catchability and availability in environmental monitoring data. The simulation combines a module for sampling conditions with a module for individual fish behavior to estimate the proportion of available fish that would escape from the sample. The method is applied to the case study of the well-monitored fish species Delta Smelt (Hypomesus transpacificus) in the San Francisco Estuary, where it has been hypothesized that changing water clarity may affect catchability for long-term monitoring studies. Results of this study indicate that given constraints on Delta Smelt swimming ability, it is unlikely that the apparent declines in Delta Smelt abundance are due to an effect of changing water clarity on catchability.


2021 ◽  
Author(s):  
Virág Adrienn Fábián ◽  
Ferenc Jordán

Abstract Food web research needs to be predictive in order to support decisions system-based conservation. In order to increase predictability and applicability, complexity needs to be reduced to simple and clear results. One question emerging frequently is whether certain perturbations (environmental effects or human impact) have positive or negative effects on natural ecosystems or their particular components. Yet, most of food web studies do not consider the sign of effects.Here, we study 6 versions of the Kelian River (Borneo) food web, representing six study sites along the river. For each network, we study the sign of the effect of a perturbed trophic group i on each other j groups. We compare the outcome of the relatively complicated dynamical simulation model and the relatively simple loop analysis model. We compare these results for the 6 sites and also the 14 trophic groups. Finally, we see if sign-agreement and sign-determinacy depend on certain structural features (node centrality, interaction strength).We found major differences between different modelling scenarios, with herbivore-detritivore fish behaving in the most consistent, while algae and particulate organic matter behaving in the least consistent way.


2021 ◽  
Vol 288 (1943) ◽  
pp. 20202371
Author(s):  
Xiang-Yi Li ◽  
Andrew Morozov ◽  
Wolfgang Goymann

In socially monogamous species, pair-bonded males often continue to provide care to all offspring in their nests despite some degree of paternity loss due to female extra-pair copulation. Previous theoretical models suggested that females can use their within-pair offspring as ‘hostages' to blackmail their social mates, so that they continue to provide care to the brood at low levels of cuckoldry. These models, however, rely on the assumption of sufficiently accurate male detection of cuckoldry and the reduction of parental effort in case of suspicion. Therefore, they cannot explain the abundant cases where cuckolded males continue to provide extensive care to the brood. Here we use an analytical population genetics model and an individual-based simulation model to explore the coevolution of female fidelity and male help in populations with two genetically determined alternative reproductive tactics (ARTs): sneakers that achieve paternity solely via extra-pair copulations and bourgeois that form a mating pair and spend some efforts in brood care. We show that when the efficiency of mate guarding is intermediate, the bourgeois males can evolve to ‘specialize' in providing care by spending more than 90% of time in helping their females while guarding them as much as possible, despite frequent cuckoldry by the sneakers. We also show that when sneakers have tactic-specific adaptations and thus are more competitive than the bourgeois in gaining extra-pair fertilizations, the frequency of sneakers and the degrees of female fidelity and male help can fluctuate in evolutionary cycles. Our theoretical predictions highlight the need for further empirical tests in species with ARTs.


Sign in / Sign up

Export Citation Format

Share Document