Endozoochory by granivorous rodents in seed dispersal of green fruits

2019 ◽  
Vol 97 (1) ◽  
pp. 42-49
Author(s):  
Yueqin Yang ◽  
Yihao Zhang ◽  
Yinhua Deng ◽  
Xianfeng Yi

Although the role of frugivores in seed dispersal has attracted scientific attention, it remains unclear whether granivorous rodents can act as frugivores to interact mutualistically with fruit-producing plants, especially those bearing green fruits inconspicuous to avian frugivores. In this study, we tracked fruit removal of the tara vine (Actinidia arguta (Siebold & Zucc.) Planch. Ex Miq.) and variegated kiwi vine (Actinidia kolomikta (Rupr. & Maxim.) Maxim.) in a temperate forest and presented fruits to the granivorous rodents Siberian chipmunk (Tamias sibiricus (Laxmann, 1769)), Korean field mouse (Apodemus peninsulae (Thomas, 1907)), and gray red-backed vole (Clethrionomys rufocanus (Sundevall, 1846) = Myodes rufocanus (Sundevall, 1846)) in the laboratory to answer this question. Seeds were collected from rodent feces to see the effects of gut passage on seed germination to determine the role of granivorous rodents in endozoochory of A. arguta and A. kolomikta. We presented clear evidence of endozoochory by granivorous rodents in seed dispersal of the two Actinidia species. Rodents appeared to play an alternative role in dispersing plants bearing green fruits. Moreover, we observed increased germination rates after gut ingestion by the granivorous rodents. Our study evidenced endozoochory of granivorous rodents and provided new insight into the mutualist interactions between rodents and plant species bearing fleshy fruits containing tiny seeds. We suggest future studies pay more attention to endozoochory of rodents and establish their mutualistic relationship with fruit-bearing plants in temperate forests.

2019 ◽  
Author(s):  
Priscila Chaverri ◽  
Gloriana Chaverri

AbstractWe explored the hypothesis of an indirect mutualistic relationship (i.e., when the association between two species is modified by a third one) within a plant-animal seed dispersal network. Bats are important long-distance dispersers of many tropical plants, yet, by consuming fruits they may disperse not only the plant’s seeds, but also the endosymbiotic fungi within those fruits. We characterized fungal communities in fruits of Ficus colubrinae and in feces of Ectophylla alba to determine if passage through the digestive tract of the bats affected the total mycobiome. Results show a significant reduction, after passage through the gut, of fungi known to be plant pathogenic, while abundance of species known to have beneficial properties significantly increased. These findings suggest that the role of frugivores in plant-animal mutualistic networks may extend beyond seed dispersal: they also promote the dispersal of potentially beneficial microbial symbionts while hindering those that can cause plant disease.


1998 ◽  
Vol 14 (4) ◽  
pp. 389-411 ◽  
Author(s):  
Mercedes S. Foster ◽  
Linda S. Delay

ABSTRACT. Seeds with ‘imitation arils’ appear wholly or partially covered by pulp or aril but actually carry no fleshy material. The mimetic seed hypothesis to explain this phenomenon proposes a parasitic relationship in which birds are deceived into dispersing seeds that resemble bird-dispersed fruits, without receiving a nutrient reward. The hard-seed for grit hypothesis proposes a mutualistic relationship in which large, terrestrial birds swallow the exceptionally hard mimetic seeds as grit for grinding the softer seeds on which they feed. They defecate, dispersing the seeds, and abrade the seed surface, enhancing germination. Any fruit mimicry is incidental. Fruiting trees of Ormosia spp. (Leguminosae: Papilionoideae) were observed to ascertain mechanisms of seed dispersal and the role of seemingly mimetic characteristics of the seeds in that dispersal. Seed predation and seed germination were also examined. Ormosia isthamensis and O. macrocalyx (but not O. bopiensis) deceived arboreally-foraging frugivorous birds into taking their mimetic seeds, although rates of seed dispersal were low. These results are consistent with the mimetic seed hypothesis. On the other hand, the rates of disappearance of seeds from the ground under the Ormosia trees, hardness of the seeds, and enhancement of germination with the abrasion of the seed coat are all consistent with the hard-seed for grit hypothesis. RESUMEN. Semillas con arilos falsos aparecen estar cubiertas en parte o completamente por pulpa o arilo, pero en realidad no llevan ninguna materia carnosa. El hipótesis semilla mímica propone que las semillas parecen frutos carnosos cuyas semillas están dispersadas por aves y que engañan las aves a dispersar sus semillas sin recibir una recompensa nutritiva — una relación parasítica. El hipótesis semilla dura para arenisca propone que aves grandes y terrestres tragan las semillas mímicas y excepcionalmente duras como arenisca para moler las semillas más suaves en que se alimentan; las aves defecan y dispersan las semillas, y las rascan, lo cual mejora la germinación — una relación mutua. Cualquier mimetismo es incidente. Se observaron árboles de Ormosia espp. (Leguminosae: Papilionoideae) con frutos para averiguar los mecanismos de dispersión de semillas y el papel que hacen las características aparentemente mímicas de sus semillas en esa dispersión. Se examinaron también la depredación y germinación de semillas. Las semillas mímicas de Ormosia isthamensis y O. macrocalyx (pero no O. bopiensis), engañaron aves frugivoras y arbóreas en comerlas, aunque las tasas de dispersión eran bajas. Estos resultados son consistente con el hipótesis semilla mímica. En cambio, las tasas de desaparición de semillas caídas de Ormosia, dureza de las semillas, y mejoramiento de germinación con la raedura de las capas de las semillas son consistente con el hipótesis semilla dura para arenisca.


2010 ◽  
Vol 10 (3) ◽  
pp. 45-51 ◽  
Author(s):  
Graziele D'Avila ◽  
Antonio Gomes-Jr ◽  
Ana Carolina Canary ◽  
Leandro Bugoni

Frugivorous birds play a key role in seed dispersal and establishment of a range of plant species, including invasive weeds, such as the Brazilian Pepper Schinus terebinthifolius. The potential of seed dispersal of Schinus by birds with varied feeding behaviours was studied through seed-viability tests and germination experiments using seeds obtained from birds in the field and birds kept in captivity. It was found that seeds collected after gut passage in five bird species in the field had higher proportion of germination as well as higher germination rates compared to the control seeds. Viability of seeds ingested by the Blue-and-yellow Tanager Thraupis bonariensis, which mandibulates seeds before ingesting, was significantly lower than control seeds, while reduction in viability of seeds ingested by the Creamy-bellied Thrush Turdus amaurochalinus was nonsignificant. Seeds ingested by birds in captivity germinated earlier than the control seeds, within 1-2 weeks, and had proportion and germination rates higher than controls. Probably both mechanical and chemical effects play a role in enhancing germination of seeds. In Brazil where both Schinus and avian frugivores had evolved together, the dependence of Schinus on generalist frugivores had been demonstrated in this study, similar to other countries where the invasive Schinus is dependent on native or introduced avian species for its spreading. This finding has important implications for the restoration of human-altered areas in South America, were Schinus is a native pioneer species, as well as for the management and restoration of areas invaded by Schinus elsewhere.


2011 ◽  
Vol 11 (4) ◽  
pp. 373-376 ◽  
Author(s):  
Raul Costa-Pereira ◽  
Francisco Severo-Neto ◽  
Tamires Soares Yule ◽  
Ana Paula Tinti Pereira

The role of fish as frugivorous and its ecological consequences are often neglected in ecological studies. However, the importance of the interaction between fish and plants is gaining force in scientific literature, and fish has been considered effective seed dispersers. The fruit-eating fish assemblage of Banara arguta (Salicaceae) was evaluated in Southern Pantanal wetlands. Nine species were reported consuming fruits, with different strategies to capture them. The distribution of B. arguta associated with the Pantanal floodplain and the presence of several species of fruit-eating fish, suggest that ichthyochory can be an important seed dispersal strategy to B. arguta.


Oecologia ◽  
2018 ◽  
Vol 188 (1) ◽  
pp. 149-158 ◽  
Author(s):  
Yueqin Yang ◽  
Zhenyu Wang ◽  
Chuan Yan ◽  
Yihao Zhang ◽  
Dongyuan Zhang ◽  
...  

2019 ◽  
Vol 166 (4) ◽  
pp. 478-486
Author(s):  
Abderrazak Tlili ◽  
Jamila Zammouri ◽  
Mustapha Gorai ◽  
Mohamed Neffati

2017 ◽  
Vol 62 (No. 9) ◽  
pp. 527-531
Author(s):  
JY Kong ◽  
HK Kim ◽  
HJ Lee ◽  
SC Yeon ◽  
JK Park ◽  
...  

A 2-year-old female Siberian chipmunk (Tamias sibiricus) was presented to the veterinary clinic for swelling, pain and lameness of the left rear leg. Radiologically, an invasive tumour around the distal femur was suspected, and the leg was surgically amputated and submitted for histopathological diagnosis. Microscopically, the mass was densely packed with multinucleated strap cells that had round-to-oval, or elongated nuclei with prominent nucleoli. These neoplastic cells occasionally formed myotubes with cross-striations and were immunohistochemically positive for muscle markers including desmin and myogenin. Consequently, embryonal rhabdomyosaroma myotubular variant of the leg with metastasis to the femur was diagnosed. Spontaneous rhabdomyosaromas are rare tumours in animals and humans, and this is the first report of its occurrence in a Siberian chipmunk.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nao Okuma ◽  
Takashi Soyano ◽  
Takuya Suzaki ◽  
Masayoshi Kawaguchi

Abstract Legumes utilize a shoot-mediated signaling system to maintain a mutualistic relationship with nitrogen-fixing bacteria in root nodules. In Lotus japonicus, shoot-to-root transfer of microRNA miR2111 that targets TOO MUCH LOVE, a nodulation suppressor in roots, has been proposed to explain the mechanism underlying nodulation control from shoots. However, the role of shoot-accumulating miR2111s for the systemic regulation of nodulation was not clearly shown. Here, we find L. japonicus has seven miR2111 loci, including those mapped through RNA-seq. MIR2111-5 expression in leaves is the highest among miR2111 loci and repressed after rhizobial infection depending on a shoot-acting HYPERNODULATION ABERRANT ROOT FORMATION1 (HAR1) receptor. MIR2111-5 knockout mutants show significantly decreased nodule numbers and miR2111 levels. Furthermore, grafting experiments using transformants demonstrate scions with altered miR2111 levels influence nodule numbers in rootstocks in a dose-dependent manner. Therefore, miR2111 accumulation in leaves through MIR2111-5 expression is required for HAR1-dependent systemic optimization of nodule number.


2019 ◽  
Vol 22 (3) ◽  
pp. 1109-1120
Author(s):  
K. L. Molefe ◽  
M. J. Tedder ◽  
V. Thabethe ◽  
I. Rushworth ◽  
C. T. Downs

Sign in / Sign up

Export Citation Format

Share Document