Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates

2004 ◽  
Vol 54 (5) ◽  
pp. 1295-1306 ◽  
Author(s):  
Märit Pringle ◽  
Jacob Poehlsgaard ◽  
Birte Vester ◽  
Katherine S. Long
2003 ◽  
Vol 47 (9) ◽  
pp. 2892-2896 ◽  
Author(s):  
Jacob Bøsling ◽  
Susan M. Poulsen ◽  
Birte Vester ◽  
Katherine S. Long

ABSTRACT The antibiotic tiamulin targets the 50S subunit of the bacterial ribosome and interacts at the peptidyl transferase center. Tiamulin-resistant Escherichia coli mutants were isolated in order to elucidate mechanisms of resistance to the drug. No mutations in the rRNA were selected as resistance determinants using a strain expressing only a plasmid-encoded rRNA operon. Selection in a strain with all seven chromosomal rRNA operons yielded a mutant with an A445G mutation in the gene coding for ribosomal protein L3, resulting in an Asn149Asp alteration. Complementation experiments and sequencing of transductants demonstrate that the mutation is responsible for the resistance phenotype. Chemical footprinting experiments show a reduced binding of tiamulin to mutant ribosomes. It is inferred that the L3 mutation, which points into the peptidyl transferase cleft, causes tiamulin resistance by alteration of the drug-binding site. This is the first report of a mechanism of resistance to tiamulin unveiled in molecular detail.


2009 ◽  
Vol 53 (12) ◽  
pp. 5275-5278 ◽  
Author(s):  
Jeffrey B. Locke ◽  
Mark Hilgers ◽  
Karen Joy Shaw

ABSTRACT Following recent reports of ribosomal protein L3 mutations in laboratory-derived linezolid-resistant (LZDr) Staphylococcus aureus, we investigated whether similar mutations were present in LZDr staphylococci of clinical origin. Sequence analysis of a variety of LZDr isolates revealed two L3 mutations, ΔSer145 (S. aureus NRS127) and Ala157Arg (Staphylococcus epidermidis 1653059), both occurring proximal to the oxazolidinone binding site in the peptidyl transferase center. The oxazolidinone torezolid maintained a ≥8-fold potency advantage over linezolid for both strains.


2018 ◽  
Vol 46 (9) ◽  
pp. 3884-3889 ◽  
Author(s):  
Jiyong Jian ◽  
Liang Chen ◽  
Zeqiang Xie ◽  
Man Zhang

Objective The aim of the present study was to report the dissemination of cfr and fexA genes mediated by linezolid resistance among Staphylococcus species. Methods Three methicillin-resistant staphylococci that were collected from a teaching hospital in Beijing were identified as linezolid-resistant. These three staphylococci were Staphylococcus aureus, S. haemolyticus, and S. cohnii. Mutations in domain V of 23S ribosomal RNA, ribosomal proteins, and the cfr, fexA, and optrA genes were analysed. Results The three isolates had no mutations of 23S ribosomal RNA, but showed mutations in the cfr and fexA genes. Mutations in the gene for ribosomal protein L3, which resulted in the amino acid exchanges Gly108Glu, Ser158Phe, and Asp159Tyr, were identified in S. cohnii X4535. Conclusions This is the first report of the cfr gene in clinical linezolid-resistant methicillin-resistant S. aureus isolated from Beijing. L3 mutations coupled with the cfr and fexA genes may act synergistically. Potential transmissibility of this agent, even without prior exposure to linezolid, may have serious epidemiological repercussions.


Life ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 134 ◽  
Author(s):  
Francisco Prosdocimi ◽  
Gabriel S. Zamudio ◽  
Miryam Palacios-Pérez ◽  
Sávio Torres de Farias ◽  
Marco V. José

The peptidyl transferase center (PTC) is the catalytic center of the ribosome and forms part of the 23S ribosomal RNA. The PTC has been recognized as the earliest ribosomal part and its origins embodied the First Universal Common Ancestor (FUCA). The PTC is frequently assumed to be highly conserved along all living beings. In this work, we posed the following questions: (i) How many 100% conserved bases can be found in the PTC? (ii) Is it possible to identify clusters of informationally linked nucleotides along its sequence? (iii) Can we propose how the PTC was formed? (iv) How does sequence conservation reflect on the secondary and tertiary structures of the PTC? Aiming to answer these questions, all available complete sequences of 23S ribosomal RNA from Bacteria and Archaea deposited on GenBank database were downloaded. Using a sequence bait of 179 bp from the PTC of Thermus termophilus, we performed an optimum pairwise alignment to retrieve the PTC region from 1424 filtered 23S rRNA sequences. These PTC sequences were multiply aligned, and the conserved regions were assigned and observed along the primary, secondary, and tertiary structures. The PTC structure was observed to be more highly conserved close to the adenine located at the catalytical site. Clusters of interrelated, co-evolving nucleotides reinforce previous assumptions that the PTC was formed by the concatenation of proto-tRNAs and important residues responsible for its assembly were identified. The observed sequence variation does not seem to significantly affect the 3D structure of the PTC ribozyme.


Genome ◽  
2006 ◽  
Vol 49 (3) ◽  
pp. 275-281 ◽  
Author(s):  
Selvi Subramanian ◽  
Linda Bonen

The L2 ribosomal protein is typically one of the most conserved proteins in the ribosome and is universally present in bacterial, archaeal, and eukaryotic cytosolic and organellar ribosomes. It is usually 260–270 amino acids long and its binding to the large-subunit ribosomal RNA near the peptidyl transferase center is mediated by a β-barrel RNA-binding domain with 10 β strands. In the diverse land plants Marchantia polymorpha (liverwort) and Oryza sativa (rice), the mitochondrial-encoded L2 ribosomal protein is about 500 amino acids long owing to a centrally located expansion containing the β3–β4 strand region. We have determined that, in wheat, the functional rpl2 gene has been trans ferred to the nucleus and much of the plant-specific internal insert has been deleted. Its mRNA is only 1.2 kb, and two expressed copies in wheat encode proteins of 318 and 319 amino acids, so they are considerably shorter than the maize nuclear-located rpl2 gene of 448 codons. Comparative sequence analysis of cereal mitochondrial L2 ribosomal proteins indicates that the mid region has undergone unexpectedly rapid evolution during the last 60 million years.Key words: mitochondria, ribosomal protein, plants, evolutionary gene transfer.


Sign in / Sign up

Export Citation Format

Share Document