peptidyl transferase center
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 19)

H-INDEX

36
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bin Jia ◽  
Tianlong Wang ◽  
Jean Lehmann

AbstractPeptide bond formation on the ribosome requires that aminoacyl-tRNAs and peptidyl-tRNAs are properly positioned on the A site and the P site of the peptidyl transferase center (PTC) so that nucleophilic attack can occur. Here we analyse some constraints associated with the induced-fit mechanism of the PTC, that promotes this positioning through a compaction around the aminoacyl ester orchestrated by U2506. The physical basis of PTC decompaction, that allows the elongated peptidyl-tRNA to free itself from that state and move to the P site of the PTC, is still unclear. From thermodynamics considerations and an analysis of published ribosome structures, the present work highlights the rational of this mechanism, in which the free-energy released by the new peptide bond is used to kick U2506 away from the reaction center. Furthermore, we show the evidence that decompaction is impaired when the nascent peptide is not yet anchored inside the exit tunnel, which may contribute to explain why the first rounds of elongation are inefficient, an issue that has attracted much interest for about two decades. Results in this field are examined in the light of the present analysis and a physico-chemical correlation in the genetic code, which suggest that elementary constraints associated with the size of the side-chain of the amino acids penalize early elongation events.


Author(s):  
Madhan R. Tirumalai ◽  
Mario Rivas ◽  
Quyen Tran ◽  
George E. Fox

In his 2001 article, “Translation: in retrospect and prospect,” the late Carl Woese made a prescient observation that “our current view of translation be reformulated to become an all-embracing perspective about which 21st century Biology can develop” (RNA 7:1055–1067, 2001, https://doi:10.1017/s1355838201010615 ). The quest to decipher the origins of life and the road to the genetic code are both inextricably linked with the history of the ribosome. After over 60 years of research, significant progress in our understanding of how ribosomes work has been made.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mariam Jaafar ◽  
Julia Contreras ◽  
Carine Dominique ◽  
Sara Martín-Villanueva ◽  
Régine Capeyrou ◽  
...  

AbstractSynthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Viswanathan Chandrasekaran ◽  
Nirupa Desai ◽  
Nicholas O Burton ◽  
Hanting Yang ◽  
Jon Price ◽  
...  

Ribosome assembly is an essential and conserved process that is regulated at each step by specific factors. Using cryo-electron microscopy (cryo-EM), we visualize the formation of the conserved peptidyl transferase center (PTC) of the human mitochondrial ribosome. The conserved GTPase GTPBP7 regulates the correct folding of 16S ribosomal RNA (rRNA) helices and ensures 2ʹ-O-methylation of the PTC base U3039. GTPBP7 binds the RNA methyltransferase NSUN4 and MTERF4, which sequester H68-71 of the 16S rRNA and allow biogenesis factors to access the maturing PTC. Mutations that disrupt binding of their Caenorhabditis elegans orthologs to the large subunit potently activate mitochondrial stress and cause viability, development, and sterility defects. Next-generation RNA sequencing reveals widespread gene expression changes in these mutant animals that are indicative of mitochondrial stress response activation. We also answer the long-standing question of why NSUN4, but not its enzymatic activity, is indispensable for mitochondrial protein synthesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anne-Xander van der Stel ◽  
Emily R. Gordon ◽  
Arnab Sengupta ◽  
Allyson K. Martínez ◽  
Dorota Klepacki ◽  
...  

AbstractFree L-tryptophan (L-Trp) stalls ribosomes engaged in the synthesis of TnaC, a leader peptide controlling the expression of the Escherichia coli tryptophanase operon. Despite extensive characterization, the molecular mechanism underlying the recognition and response to L-Trp by the TnaC-ribosome complex remains unknown. Here, we use a combined biochemical and structural approach to characterize a TnaC variant (R23F) with greatly enhanced sensitivity for L-Trp. We show that the TnaC–ribosome complex captures a single L-Trp molecule to undergo termination arrest and that nascent TnaC prevents the catalytic GGQ loop of release factor 2 from adopting an active conformation at the peptidyl transferase center. Importantly, the L-Trp binding site is not altered by the R23F mutation, suggesting that the relative rates of L-Trp binding and peptidyl-tRNA cleavage determine the tryptophan sensitivity of each variant. Thus, our study reveals a strategy whereby a nascent peptide assists the ribosome in detecting a small metabolite.


2021 ◽  
Vol 11 (Suppl_1) ◽  
pp. S24-S25
Author(s):  
Alena Yakusheva ◽  
Olga Shulenina ◽  
Evgeny Pichkur ◽  
Alena Paleskava ◽  
Alexander Myasnikov ◽  
...  

Background: The efficiency of widely used antibiotics is limited by continuous improvement of resistance mechanisms. Thus, the research of poorly studied drugs that have not received practical use until now becomes relevant again. Protein translation is one of the major targets for antibiotics. Madumycin II (MADU) is an antibiotic of the streptogramin A class that binds to the peptidyl transferase center of the initiated bacterial 70S ribosome inhibiting the first cycle of peptide bond formation (I.A. Osterman et al. Nucleic Acids Res., 2017). The ability of MADU to interfere with translating ribosome is an open question that we address by investigation of high-resolution cryo-EM structures of MADU bound 70S ribosome complexes from Escherichia coli. Methods: Purified initiated and translating ribosome complexes preincubated with MADU were applied onto freshly glow discharged carbon-coated grids (Quantifoil R 1.2/1.3) and flash-frozen in the liquid ethane pre-cooled by liquid nitrogen in the Vitrobot Mark IV. Frozen grids were transferred into an in-house Titan Krios microscope. Data were collected using EPU software. Movie stacks were preprocessed in Warp software. For image processing, we have used several software packages: Relion 3.1, CryoSPARC, and CisTEM. The model was built in Coot. Results: We have obtained high-resolution cryo-EM structures of two ribosomal complexes with MADU before and after the first cycle of peptide bond formation with an average resolution of 2.3 Å. Preliminary analysis of the structures shows no major differences in the MADU binding mode to the ribosomal complexes under study suggesting that the quantity of amino acid residues attached to the P-site tRNA does not impact MADU bonding. Moreover, in both cases, we observed similar destabilization of the CCA-ends of A- and P-site tRNAs underlining the comparable influence of MADU on the ribosomal complexes. Conclusion: Our results suggest that although MADU binding site is located in the peptidyl transferase center, the presence of the second amino acid residue on the P-site tRNA does not preclude antibiotic binding. We assume that further elongation of the polypeptide chain would not have any impact either. High conformational lability of the CCA-ends of tRNA at the A and P sites upon binding of MADU obviously plays an important role in the inhibition mechanism of the bacterial ribosome. The further structural and biochemical analysis will be necessary to shed more light on the detailed mechanism of MADU action.


2021 ◽  
Author(s):  
Kaitlyn Tsai ◽  
Vanja Stojkovic ◽  
Lianet Noda-Garcia ◽  
Iris D. Young ◽  
Alexander G. Myasnikov ◽  
...  

Many clinically useful antibiotics inhibit the bacterial ribosome. The ribosomal RNA-modifying enzyme Cfr methylates an adenosine (m8A2503) in the peptidyl transferase center and causes cross-resistance to several classes of antibiotics. Despite the prevalence of this mode of resistance, mechanisms of adaptation to antibiotic pressure that exploit ribosome modification by Cfr are poorly understood. Moreover, direct evidence for how m8A2503 alters antibiotic binding sites within the ribosome is lacking. To address these questions, we evolved Cfr under antibiotic selection to generate variants that confer increased resistance and methylation of rRNA, provided by enhanced Cfr expression and stability. Using a variant which achieves near-stoichiometric methylation, we determined a 2.2Å cryo-EM structure of the Cfr-modified ribosome, revealing the molecular basis for resistance and informing design of antibiotics that overcome Cfr resistance.


2020 ◽  
Author(s):  
Olga Rodríguez-Galán ◽  
Juan J García-Gómez ◽  
Iván V Rosado ◽  
Wu Wei ◽  
Alfonso Méndez-Godoy ◽  
...  

Abstract Proteostasis needs to be tightly controlled to meet the cellular demand for correctly de novo folded proteins and to avoid protein aggregation. While a coupling between translation rate and co-translational folding, likely involving an interplay between the ribosome and its associated chaperones, clearly appears to exist, the underlying mechanisms and the contribution of ribosomal proteins remain to be explored. The ribosomal protein uL3 contains a long internal loop whose tip region is in close proximity to the ribosomal peptidyl transferase center. Intriguingly, the rpl3[W255C] allele, in which the residue making the closest contact to this catalytic site is mutated, affects diverse aspects of ribosome biogenesis and function. Here, we have uncovered, by performing a synthetic lethal screen with this allele, an unexpected link between translation and the folding of nascent proteins by the ribosome-associated Ssb-RAC chaperone system. Our results reveal that uL3 and Ssb-RAC cooperate to prevent 80S ribosomes from piling up within the 5′ region of mRNAs early on during translation elongation. Together, our study provides compelling in vivo evidence for a functional connection between peptide bond formation at the peptidyl transferase center and chaperone-assisted de novo folding of nascent polypeptides at the solvent-side of the peptide exit tunnel.


Life ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 201
Author(s):  
Mario Rivas ◽  
George E. Fox

The peptidyl transferase center of the modern ribosome has been found to encompass an area of twofold pseudosymmetry (SymR). This observation strongly suggests that the very core of the ribosome arose from a dimerization event between two modest-sized RNAs. It was previously shown that at least four non-standard interactions exist between the two halves of SymR. Herein, we verify that the structure of the SymR is highly conserved with respect to both ribosome transition state and phylogenetic diversity. These comparisons also reveal two additional sites of interaction between the two halves of SymR and refine our understanding of the previously known interactions. In addition, the possible role that magnesium may have in the coordination, stabilization, association, and evolutionary history of the two halves (A-region and P-region) was examined. Together, the results identify a likely site where structural elements and Mg2+ ions may have facilitated the ligation of two aboriginal RNAs into a single unit.


2020 ◽  
Author(s):  
Anna B. Loveland ◽  
Egor Svidritskiy ◽  
Denis Susorov ◽  
Soojin Lee ◽  
Alexander Park ◽  
...  

AbstractToxic dipeptide repeat (DPR) proteins are produced from expanded G4C2 hexanucleotide repeats in the C9ORF72 gene, which cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Two DPR proteins, poly-PR and poly-GR, repress cellular translation but the molecular mechanism remains unknown. Here we show that poly-PR and poly-GR of ≥ 20 repeats inhibit the ribosome’s peptidyl-transferase activity at nanomolar concentrations, comparable to specific translation inhibitors. High-resolution cryo-EM structures reveal that poly-PR and poly-GR block the polypeptide tunnel of the ribosome, extending into the peptidyl-transferase center. Consistent with these findings, the macrolide erythromycin, which binds in the tunnel, competes with the DPR proteins and restores peptidyl-transferase activity. Our results demonstrate that strong and specific binding of poly-PR and poly-GR in the ribosomal tunnel blocks translation, revealing the structural basis of their toxicity in C9ORF72-ALS/FTD.


Sign in / Sign up

Export Citation Format

Share Document