scholarly journals Three-dimensional simulations of the interstellar medium in dwarf galaxies - II. Galactic winds

2004 ◽  
Vol 352 (2) ◽  
pp. 363-375 ◽  
Author(s):  
A. Marcolini ◽  
F. Brighenti ◽  
A. D'Ercole
2007 ◽  
Vol 14 (4) ◽  
pp. 351-359 ◽  
Author(s):  
D. Shaikh ◽  
G. P. Zank

Abstract. Three-dimensional time dependent numerical simulations of compressible magnetohydrodynamic fluids describing super-Alfvénic, supersonic and strongly magnetized space and laboratory plasmas show a nonlinear relaxation towards a state of near incompressibility. The latter is characterized essentially by a subsonic turbulent Mach number. This transition is mediated dynamically by disparate spectral energy dissipation rates in compressible magnetosonic and shear Alfvénic modes. Nonlinear cascades lead to super-Alfvénic turbulent motions decaying to a sub-Alfvénic regime that couples weakly with (magneto)acoustic cascades. Consequently, the supersonic plasma motion is transformed into highly subsonic motion and density fluctuations experience a passive convection. This model provides a self-consistent explaination of the ubiquitous nature of incompressible magnetoplasma fluctuations in the solar wind and the interstellar medium.


Sign in / Sign up

Export Citation Format

Share Document