suwannee river
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 22)

H-INDEX

34
(FIVE YEARS 2)

Author(s):  
Kema Malki ◽  
Natalie A. Sawaya ◽  
Michael J. Tisza ◽  
Felipe H. Coutinho ◽  
Karyna Rosario ◽  
...  

Flow from high magnitude springs fed by the Floridan aquifer system contribute hundreds of liters of water per second to rivers, creating unique lotic systems. Despite their importance as freshwater sources and their contributions to the state’s major rivers, little is known about the composition and spatiotemporal variability of prokaryotic and viral communities of these spring systems or their influence on downstream river sites. At four time points throughout a year, we determined the abundance and diversity of prokaryotic and viral communities at three sites within the first-magnitude Manatee Springs system (the spring head where water emerges from the aquifer, a mixed region where the spring run ends, and a downstream site in the Suwannee River). The abundance of prokaryotes and virus-like particles increased 100-fold from the spring head to the river and few members from the head communities persisted in the river at low abundance, suggesting the springs play a minor role in seeding downstream communities. Prokaryotic and viral communities within Manatee Springs clustered by site, with seasonal variability likely driven by flow. As water flowed through the system, microbial community composition was affected by changes in physiochemical parameters and community coalescence. Evidence of species sorting and mass effects could be seen in the assemblages. Greater temporal fluctuations were observed in prokaryotic and viral community composition with increasing distance from the spring outflow, reflecting the relative stability of the groundwater environment, and comparisons to springs from prior work reaffirmed that distinct first magnitude springs support unique communities. Importance Prokaryotic and viral communities are central to food webs and biogeochemical processes in aquatic environments, where they help maintain ecosystem health. The Floridan aquifer system (FAS), which is the primary drinking water source for millions of people in the southeastern United States, contributes large amounts of freshwater to major river systems in Florida through its springs. However, there is a paucity of information regarding the spatiotemporal dynamics of microbial communities in these essential flowing freshwater systems. This work explored the prokaryotic and viral communities in a first-magnitude spring system fed by the FAS that discharges millions of liters of water per day into the Suwannee River. This study examined microbial community composition through space and time, as well as the environmental parameters and metacommunity assembly mechanisms that shape these communities, providing a foundational understanding for monitoring future changes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dylan Sinnickson ◽  
David Chagaris ◽  
Micheal Allen

The ecology of estuaries is shaped significantly by the extent of freshwater discharge which regulates abiotic processes and influences overall biological productivity. The Suwannee River Estuary of Florida’s Big Bend Coastline has historically been a productive and diverse estuarine ecosystem supported by significant freshwater inputs from the Suwannee River. In recent years, significant changes in land use and climatic conditions have resulted in lower discharges from the Suwannee. Our objectives were to explore the impact of freshwater inputs from the Suwannee River on the estuarine forage fish and sportfish communities downstream. We built a trophic-dynamic food web model in Ecopath with Ecosim to simulate different levels of discharge and evaluate how changes in discharge (drought and floods) would influence the trophic structure of the food web. Using the fitted model, we applied a series of different short-term and long-term flow projections under different climatic scenarios to evaluate impacts on fish functional groups and sportfish biomass. Simulations suggested that ecological production was more influenced by drought conditions than flood conditions. In our short-term scenarios, the drought simulations produced biomass changes that were approximately twice as substantial as the flood scenarios. When making comparisons to other published EwE models, we generally observed smaller changes in biomass production. Although this model focused on the influence of bottom-up effects, we observed strong top-down control of snook (Centropomus undecimalis) on the system. Several functional groups were particularly sensitive to changes in snook abundance which included spotted seatrout (Cynoscion nebulosus), sand seatrout (C. arenarius), and other members of the family Sciaenidae. Because snook have recently colonized the estuary, likely as a result of warmer winter temperatures, this finding has implications for climate change and natural resource management.


2021 ◽  
pp. 117395
Author(s):  
Davide Palma ◽  
Amina Khaled ◽  
Mohamad Sleiman ◽  
Guillaume Voyard ◽  
Claire Richard

2021 ◽  
Author(s):  
Laura Scrano ◽  
Francesca Mottola ◽  
Cosimo Mario Stefanelli ◽  
Filomena Lelario ◽  
Giuliana Bianco ◽  
...  

<p>Advanced techniques have been recently used to obtain information on Natural Organic Matter (NOM). However, the current knowledge of the chemical structure of humic substances (HS) is still incomplete. These substances appear to be too complex mixtures of charged organic molecules, and their characterization remains one of the most stimulating challenges in modern environmental science. Knowledge of the chemical composition of NOM is of great importance for the definition of soil and water properties because it has a significant impact on the understanding of numerous molecular and global-scale processes.<br>This study aims to apply two-dimensional graphical methods to resolve homologous series in mass spectra of humic extracts (Suwannee River, Nordic Aquatic and Soil) obtained using FT-ICR / MS (Thermo LTQ FT, 7 Tesla) in negative ionization mode. Electrospray ionization (ESI) coupled with ultra-high resolution mass spectrometry offered by Fourier transformed ion cyclotron resonance (FT-ICR / MS) has emerged with great promise as it can provide an overview of the NOM composition and details on a molecular scale. NOM's very high-resolution FT-ICR spectra can be extremely complicated. These spectra usually contain many peaks at each nominal mass and thousands of peaks across the entire spectrum. Each peak can represent a chemically distinct compound. This complexity poses an analytical challenge to the study of spectra for structural interpretation. Two-dimensional graphing methods, such as Kendrick and van Krevelen graphs, have been successfully applied to very high-resolution mass spectra, allowing peaks to be sorted into complicated spectra from their homologous relatives across the mass range.<br>In van Krevelen plots, ionic signals corresponding to structural similarities between homologous series of compounds involved in the loss or gain of functional groups are found on straight lines. We identified many interesting homologous regions and compared the three humic standards with each other. Finally, we recognized the structural relationships of the homologous series obtained through Kendrick graphs.<br>The results showed homologous series in the Suwannee River and Nordic Aquatic samples compared to the soil-extracted samples (soil-FA and soil-HA). In particular, homologous series signals related to methylation/demethylation, hydrogenation/dehydrogenation, hydration/dehydration, and oxidation/reduction processes were lower in the soil-FA van Krevelen diagrams. On the contrary, the differences were not so evident in all the homologous series for the soil-HA samples.</p>


Author(s):  
Kornravee Saipetch ◽  
Rajendra Khanal ◽  
Chihiro Yoshimura

Abstract Fluorescence quenching of protein-like substances by natural organic matter is a well-known phenomenon, but there are no known methods for correcting it. The main objective of this research was to develop empirical equation to correct the fluorescence quenching of different concentrations of bovine serum albumin (BSA – 0.15, 0.25, 0.5, 0.75, 1, 1.25 μmol/L (μM)) by Suwannee river natural organic matter (SWNOM - 0,2,4,6,8,10 mg-C/L) using the fluorescence titration method. The excitation emission matrix (EEM) data were analyzed by parallel factor analysis with inner filter effect removal. With increasing SWNOM concentration, BSA peak intensity quenching was in the range 29–85%, with a linear relationship for increment of either BSA or SWNOM concentration. A higher ratio of SWNOM to BSA resulted in greater BSA peak intensity quenching. The unquenched BSA peak (BSA (RU)) is given by the empirical equation. BSA (RU) = {2.052 × peak C (RU) + 2.522} × quenched peak T (RU)0.624 The calculated unquenched BSA peak intensities using the empirical equation agreed well with the actual unquenched peak values (R2 = 0.98, mean absolute error = 0.33 RU). The equation is expected to help in rapid estimation of the quenching effect of SWNOM on BSA.


2020 ◽  
Vol 54 (4) ◽  
pp. 2334-2343 ◽  
Author(s):  
Guowei Xing ◽  
Shikha Garg ◽  
Christopher J. Miller ◽  
A. Ninh Pham ◽  
T. David Waite

Sign in / Sign up

Export Citation Format

Share Document