scholarly journals Prompt emission of high-energy photons from gamma ray bursts

2007 ◽  
Vol 380 (1) ◽  
pp. 78-92 ◽  
Author(s):  
Nayantara Gupta ◽  
Bing Zhang
2015 ◽  
Vol 2015 ◽  
pp. 1-37 ◽  
Author(s):  
Asaf Pe’er

In recent years, our understanding of gamma-ray bursts (GRB) prompt emission has been revolutionized, due to a combination of new instruments, new analysis methods, and novel ideas. In this review, I describe the most recent observational results and current theoretical interpretation. Observationally, a major development is the rise of time resolved spectral analysis. These led to (I) identification of a distinguished high energy component, with GeV photons often seen at a delay and (II) firm evidence for the existence of a photospheric (thermal) component in a large number of bursts. These results triggered many theoretical efforts aimed at understanding the physical conditions in the inner jet regions. I highlight some areas of active theoretical research. These include (I) understanding the role played by magnetic fields in shaping the dynamics of GRB outflow and spectra; (II) understanding the microphysics of kinetic and magnetic energy transfer, namely, accelerating particle to high energies in both shock waves and magnetic reconnection layers; (III) understanding how subphotospheric energy dissipation broadens the “Planck” spectrum; and (IV) geometrical light aberration effects. I highlight some of these efforts and point towards gaps that still exist in our knowledge as well as promising directions for the future.


2012 ◽  
Vol 08 ◽  
pp. 231-234
Author(s):  
JIRONG MAO

The jitter radiation, which is the emission of relativistic electrons in the random and small-scale magnetic field, is utilized to investigate the high-energy emission of gamma-ray bursts. We produce the random and small-scale magnetic field using turbulent scenario. The electrons can be accelerated by stochastic acceleration. We also estimate the acceleration and cooling timescales, aiming to identify the validation of jitter regime under the GRB fireball framework. The possible maximum energy of electrons in our case is estimated as well.


2009 ◽  
Vol 18 (10) ◽  
pp. 1551-1555
Author(s):  
PETER MÉSZÁROS

I discuss some recent results on the prompt emission of gamma-ray bursts, in particular the jet and radiation properties of the naked-eye burst GRB 080319b, based on Swift and related observations. I then discuss the recent observations by the Fermi satellite of GRB 080916C, the resulting constraints for the bulk Lorentz factor determinations, and the highest lower limit on the quantum gravity energy scale obtained so far.


2020 ◽  
Vol 499 (4) ◽  
pp. 5986-5992
Author(s):  
Nikhil Sarin ◽  
Paul D Lasky ◽  
Gregory Ashton

ABSTRACT The spin-down energy of millisecond magnetars has been invoked to explain X-ray afterglow observations of a significant fraction of short and long gamma-ray bursts. Here, we extend models previously introduced in the literature, incorporating radiative losses with the spin-down of a magnetar central engine through an arbitrary braking index. Combining this with a model for the tail of the prompt emission, we show that our model can better explain the data than millisecond-magnetar models without radiative losses or those that invoke spin-down solely through vacuum dipole radiation. We find that our model predicts a subset of X-ray flares seen in some gamma-ray bursts. We can further explain the diversity of X-ray plateaus by altering the radiative efficiency and measure the braking index of newly born millisecond magnetars. We measure the braking index of GRB061121 as $n=4.85^{+0.11}_{-0.15}$ suggesting the millisecond-magnetar born in this gamma-ray burst spins down predominantly through gravitational-wave emission.


2012 ◽  
Vol 8 (S290) ◽  
pp. 263-264
Author(s):  
Liang Li ◽  
En-Wei Liang ◽  
He Gao ◽  
Bing Zhang

AbstractWell-sampled optical lightcurves of 146 gamma-ray bursts (GRBs) are compiled from literature. We identify possible emission components based on our empirical fits and present statistical analysis for these components. We find that the flares are related to prompt emission, suggesting that they could have the same origin in different episodes. The shallow decay segment is not correlated with prompt gamma-rays. It likely signals a long-lasting injected wind from GRB central engines. Early after onset peak is closely related with prompt emission. The ambient medium density profile is likely n ∝ r−1. No correlation between the late re-brightening bump and prompt gamma-rays or the onset bump is found. They may be from another jet component.


2012 ◽  
Vol 754 (2) ◽  
pp. 121 ◽  
Author(s):  
◽  
M. Ackermann ◽  
M. Ajello ◽  
L. Baldini ◽  
G. Barbiellini ◽  
...  

2012 ◽  
Vol 547 ◽  
pp. A95 ◽  
Author(s):  
F. Longo ◽  
E. Moretti ◽  
L. Nava ◽  
R. Desiante ◽  
M. Olivo ◽  
...  

Author(s):  
M. Merck ◽  
D. L. Bertsch ◽  
B. L. Dingus ◽  
C. E. Fichtel ◽  
R. C. Hartman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document