scholarly journals Discovery of a broad iron line in the black hole candidate Swift J1753.5−0127, and the disc emission in the low/hard state revisited

2009 ◽  
Vol 394 (4) ◽  
pp. 2080-2088 ◽  
Author(s):  
Beike Hiemstra ◽  
Paolo Soleri ◽  
Mariano Méndez ◽  
Tomaso Belloni ◽  
Reham Mostafa ◽  
...  
2015 ◽  
Vol 67 (1) ◽  
pp. 11-11 ◽  
Author(s):  
A. Yoshikawa ◽  
S. Yamada ◽  
S. Nakahira ◽  
M. Matsuoka ◽  
H. Negoro ◽  
...  

2010 ◽  
Vol 6 (S275) ◽  
pp. 255-259
Author(s):  
M. Coriat ◽  
S. Corbel ◽  
L. Prat ◽  
J. C. A. Miller-Jones ◽  
D. Cseh ◽  
...  

AbstractIn recent years, numerous efforts have been devoted to unravel the connection between accretion flow and jets in accreting compact objects. Here we report new constraints on these issues, through the long term study of the radio and X-ray behaviour of the black hole candidate H 1743–322. This source is known to be one of the “outliers” of the universal radio/X-ray correlation, i.e. a group of stellar mass accreting black holes displaying fainter radio emission for a given X-ray luminosity, than expected from the correlation. In this work we find, at high X-ray luminosity in the hard state, a tight radio/X-ray correlation with an unusual steep slope of b = 1.38 ± 0.03. This correlation then breaks below ~5 × 10−3LEdd (M/10M⊙)−1 in X-rays and becomes shallower. When compared with radio/X-ray data from other black hole X-ray binaries, we see that the deviant points of H 1743–322 join the universal correlation and seem to follow it at low luminosity. Based on these results, we investigate several hypotheses that could explain both the b ~ 1.4 slope and the transition toward the universal correlation.


2006 ◽  
Vol 652 (2) ◽  
pp. L113-L116 ◽  
Author(s):  
J. M. Miller ◽  
J. Homan ◽  
G. Miniutti

2020 ◽  
Vol 496 (2) ◽  
pp. 1001-1012 ◽  
Author(s):  
V A Cúneo ◽  
K Alabarta ◽  
L Zhang ◽  
D Altamirano ◽  
M Méndez ◽  
...  

ABSTRACT The black hole candidate and X-ray binary MAXI J1535−571 was discovered in 2017 September. During the decay of its discovery outburst, and before returning to quiescence, the source underwent at least four reflaring events, with peak luminosities of ∼1035–36 erg s−1 (d/4.1 kpc)2. To investigate the nature of these flares, we analysed a sample of NICER (Neutron star Interior Composition Explorer) observations taken with almost daily cadence. In this work, we present the detailed spectral and timing analysis of the evolution of the four reflares. The higher sensitivity of NICER at lower energies, in comparison with other X-ray detectors, allowed us to constrain the disc component of the spectrum at ∼0.5 keV. We found that during each reflare the source appears to trace out a q-shaped track in the hardness–intensity diagram similar to those observed in black hole binaries during full outbursts. MAXI J1535−571 transits between the hard state (valleys) and softer states (peaks) during these flares. Moreover, the Comptonized component is undetected at the peak of the first reflare, while the disc component is undetected during the valleys. Assuming the most likely distance of 4.1 kpc, we find that the hard-to-soft transitions take place at the lowest luminosities ever observed in a black hole transient, while the soft-to-hard transitions occur at some of the lowest luminosities ever reported for such systems.


Author(s):  
Arghajit Jana ◽  
Gaurava K Jaisawal ◽  
Sachindra Naik ◽  
Neeraj Kumari ◽  
Birendra Chhotaray ◽  
...  

Abstract We present detailed timing and spectral studies of the black hole candidate MAXI J0637–430 during its 2019-2020 outburst using observations with the Neutron Star Interior Composition Explorer (NICER) and the Neil Gehrels Swift Observatory. We find that the source evolves through the soft-intermediate, high-soft, hard-intermediate and low-hard states during the outburst. No evidence of quasi-periodic oscillations is found in the power density spectra of the source. Weak variability with fractional rms amplitude $<5{{\ \rm per\ cent}}$ is found in the softer spectral states. In the hard-intermediate and hard states, high variability with the fractional rms amplitude of $>20{{\ \rm per\ cent}}$ is observed. The 0.7 − 10 keV spectra with NICER are studied with a combined disk-blackbody and nthcomp model along with the interstellar absorption. The temperature of the disc is estimated to be 0.6 keV in the rising phase and decreased slowly to 0.1 keV in the declining phase. The disc component was not detectable or absent during the low hard state. From the state-transition luminosity and the inner edge of the accretion flow, we estimate the mass of the black hole to be in the range of 5–12 M⊙, assuming the source distance of d < 10 kpc.


2019 ◽  
Vol 490 (1) ◽  
pp. 1350-1362 ◽  
Author(s):  
D J K Buisson ◽  
A C Fabian ◽  
D Barret ◽  
F Fürst ◽  
P Gandhi ◽  
...  

ABSTRACT MAXI J1820+070 (optical counterpart ASASSN-18ey) is a black hole candidate discovered through its recent very bright outburst. The low extinction column and long duration at high flux allow detailed measurements of the accretion process to be made. In this work, we compare the evolution of X-ray spectral and timing properties through the initial hard state of the outburst. We show that the inner accretion disc, as measured by relativistic reflection, remains steady throughout this period of the outburst. Nevertheless, subtle spectral variability is observed, which is well explained by a change in coronal geometry. However, characteristic features of the temporal variability – low-frequency roll-over and quasi-periodic oscillation frequency – increase drastically in frequency, as the outburst proceeds. This suggests that the variability time-scales are governed by coronal conditions rather than solely by the inner disc radius. We also find a strong correlation between X-ray luminosity and coronal temperature. This can be explained by electron pair production with a changing effective radius and a non-thermal electron fraction of $\sim 20$ per cent.


2020 ◽  
Vol 499 (1) ◽  
pp. 851-861 ◽  
Author(s):  
L Zhang ◽  
D Altamirano ◽  
V A Cúneo ◽  
K Alabarta ◽  
T Enoto ◽  
...  

ABSTRACT We studied the outburst evolution and timing properties of the recently discovered X-ray transient MAXI J1348−630 as observed with NICER. We produced the fundamental diagrams commonly used to trace the spectral evolution, and power density spectra to study the fast X-ray variability. The main outburst evolution of MAXI J1348−630 is similar to that commonly observed in black hole transients. The source evolved from the hard state (HS), through hard- and soft-intermediate states, into the soft state in the outburst rise, and back to the HS in reverse during the outburst decay. At the end of the outburst, MAXI J1348−630 underwent two reflares with peak fluxes approximately one and two orders of magnitude fainter than the main outburst, respectively. During the reflares, the source remained in the HS only, without undergoing any state transitions, which is similar to the so-called ‘failed outbursts’. Different types of quasi-periodic oscillations (QPOs) are observed at different phases of the outburst. Based on our spectral-timing results, we conclude that MAXI J1348−630 is a black hole candidate.


2008 ◽  
Vol 60 (3) ◽  
pp. 637-651 ◽  
Author(s):  
Takehiro Miyakawa ◽  
Kazutaka Yamaoka ◽  
Jeroen Homan ◽  
Koji Saito ◽  
Tadayasu Dotani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document