scholarly journals Gravitational lensing of the cosmic microwave background by non-linear structures

2010 ◽  
Vol 411 (2) ◽  
pp. 1067-1076 ◽  
Author(s):  
Philipp M. Merkel ◽  
Björn Malte Schäfer
2020 ◽  
Vol 638 ◽  
pp. L1 ◽  
Author(s):  
S. Joudaki ◽  
H. Hildebrandt ◽  
D. Traykova ◽  
N. E. Chisari ◽  
C. Heymans ◽  
...  

We present a combined tomographic weak gravitational lensing analysis of the Kilo Degree Survey (KV450) and the Dark Energy Survey (DES-Y1). We homogenize the analysis of these two public cosmic shear datasets by adopting consistent priors and modeling of nonlinear scales, and determine new redshift distributions for DES-Y1 based on deep public spectroscopic surveys. Adopting these revised redshifts results in a 0.8σ reduction in the DES-inferred value for S​8, which decreases to a 0.5σ reduction when including a systematic redshift calibration error model from mock DES data based on the MICE2 simulation. The combined KV450+DES-Y1 constraint on S8 = 0.762−0.024+0.025 is in tension with the Planck 2018 constraint from the cosmic microwave background at the level of 2.5σ. This result highlights the importance of developing methods to provide accurate redshift calibration for current and future weak-lensing surveys.


2008 ◽  
Vol 388 (4) ◽  
pp. 1618-1626 ◽  
Author(s):  
Carmelita Carbone ◽  
Volker Springel ◽  
Carlo Baccigalupi ◽  
Matthias Bartelmann ◽  
Sabino Matarrese

2019 ◽  
Vol 490 (1) ◽  
pp. 813-831 ◽  
Author(s):  
Daniel B Thomas ◽  
Michael Kopp ◽  
Katarina Markovič

ABSTRACT Constraints on the properties of the cosmological dark matter have previously been obtained in a model-independent fashion using the generalized dark matter (GDM) framework. Here we extend that work in several directions: We consider the inclusion of WiggleZ matter power spectrum data (MPS), and show that this improves the constraints on the two perturbative GDM parameters, $c^2_\mathrm{ s}$ and $c^2_\text{vis}$, by a factor of 3, for a conservative choice of wavenumber range. A less conservative choice can yield an improvement of up to an order of magnitude compared to previous constraints. In order to examine the robustness of this result we develop a GDM halo model (HM) to explore how non-linear structure formation could proceed in this framework, since currently GDM has only been defined perturbatively and only linear theory has been used when generating constraints. We then examine how the HM affects the constraints obtained from the MPS data. The less-conservative wavenumber range shows a significant difference between linear and non-linear modelling, with the latter favouring GDM parameters inconsistent with ΛCDM, underlining the importance of careful non-linear modelling when using this data. We also use this HM to establish the robustness of previously obtained constraints, particularly those that involve weak gravitational lensing of the cosmic microwave background. Additionally, we show how the inclusion of neutrino mass as a free parameter affects previous constraints on the GDM parameters.


Sign in / Sign up

Export Citation Format

Share Document