south pole telescope
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 12)

H-INDEX

35
(FIVE YEARS 4)

2021 ◽  
Vol 922 (2) ◽  
pp. 259
Author(s):  
M. Millea ◽  
C. M. Daley ◽  
T-L. Chou ◽  
E. Anderes ◽  
P. A. R. Ade ◽  
...  

Abstract We perform the first simultaneous Bayesian parameter inference and optimal reconstruction of the gravitational lensing of the cosmic microwave background (CMB), using 100 deg2 of polarization observations from the SPTpol receiver on the South Pole Telescope. These data reach noise levels as low as 5.8 μK arcmin in polarization, which are low enough that the typically used quadratic estimator (QE) technique for analyzing CMB lensing is significantly suboptimal. Conversely, the Bayesian procedure extracts all lensing information from the data and is optimal at any noise level. We infer the amplitude of the gravitational lensing potential to be A ϕ = 0.949 ± 0.122 using the Bayesian pipeline, consistent with our QE pipeline result, but with 17% smaller error bars. The Bayesian analysis also provides a simple way to account for systematic uncertainties, performing a similar job as frequentist “bias hardening” or linear bias correction, and reducing the systematic uncertainty on A ϕ due to polarization calibration from almost half of the statistical error to effectively zero. Finally, we jointly constrain A ϕ along with A L, the amplitude of lensing-like effects on the CMB power spectra, demonstrating that the Bayesian method can be used to easily infer parameters both from an optimal lensing reconstruction and from the delensed CMB, while exactly accounting for the correlation between the two. These results demonstrate the feasibility of the Bayesian approach on real data, and pave the way for future analysis of deep CMB polarization measurements with SPT-3G, Simons Observatory, and CMB-S4, where improvements relative to the QE can reach 1.5 times tighter constraints on A ϕ and seven times lower effective lensing reconstruction noise.


Author(s):  
M Aguena ◽  
C Benoist ◽  
L N da Costa ◽  
R L C Ogando ◽  
J Gschwend ◽  
...  

Abstract We present a new (2+1)D galaxy cluster finder based on photometric redshifts called Wavelet Z Photometric (wa zp) applied to DES first year (Y1A1) data. The results are compared to clusters detected by the South Pole Telescope (SPT) survey and the redMaPPer cluster finder, the latter based on the same photometric data. wa zp searches for clusters in wavelet-based density maps of galaxies selected in photometric redshift space without any assumption on the cluster galaxy populations. The comparison to other cluster samples was performed with a matching algorithm based on angular proximity and redshift difference of the clusters. It led to the development of a new approach to match two optical cluster samples, following an iterative approach to minimize incorrect associations. The wa zp cluster finder applied to DES Y1A1 galaxy survey (1,511.13 deg2 up to mi = 23 mag) led to the detection of 60,547 galaxy clusters with redshifts 0.05 < z < 0.9 and richness Ngals ≥ 5. Considering the overlapping regions and redshift ranges between the DES Y1A1 and SPT cluster surveys, all sz based SPT clusters are recovered by the wa zp sample. The comparison between wa zp and redMaPPer cluster samples showed an excellent overall agreement for clusters with richness Ngals (λ for redMaPPer) greater than 25 (20), with 95% recovery on both directions. Based on the cluster cross-match we explore the relative fragmentation of the two cluster samples and investigate the possible signatures of unmatched clusters.


2020 ◽  
Vol 500 (2) ◽  
pp. 2236-2249
Author(s):  
Ramij Raja ◽  
Majidul Rahaman ◽  
Abhirup Datta ◽  
Reinout J van Weeren ◽  
Huib T Intema ◽  
...  

ABSTRACT The presence of non-thermal electrons and large-scale magnetic fields in the intracluster medium is known through the detection of megaparsec (Mpc) scale diffuse radio synchrotron emission. Although a significant amount of progress in finding new diffuse radio sources has happened in the last decade, most of the investigation has been constrained towards massive low-redshift clusters. In this work, we explore clusters with redshift z > 0.3 in search of diffuse radio emission, at 325 MHz with the Giant Metrewave Radio Telescope. This campaign has resulted in the discovery of two new radio haloes (SPT-CL J0013−4906 and SPT-CL J0304−4401) along with two other detections (SPT-CL J2031−4037 and SPT-CL J2248−4431), previously reported (at 325 MHz) in the literature. In addition, we detect a halo candidate in one cluster in our sample, and upper limits for haloes are placed in eight clusters where no diffuse emission is detected. In the P1.4–LX plane, the detected haloes follow the observed correlation, whereas the upper limits lie above the correlation line, indicating the possibility of future detection with sensitive observations.


2020 ◽  
Vol 496 (2) ◽  
pp. 1554-1564 ◽  
Author(s):  
Adam B Mantz ◽  
Steven W Allen ◽  
R Glenn Morris ◽  
Rebecca E A Canning ◽  
Matthew Bayliss ◽  
...  

ABSTRACT We present results from a 577 ks XMM–Newton observation of SPT-CL J0459–4947, the most distant cluster detected in the South Pole Telescope 2500 square degree (SPT-SZ) survey, and currently the most distant cluster discovered through its Sunyaev–Zel’dovich effect. The data confirm the cluster’s high redshift, z = 1.71 ± 0.02, in agreement with earlier, less precise optical/IR photometric estimates. From the gas density profile, we estimate a characteristic mass of $M_{500}=(1.8\pm 0.2)\times 10^{14}\, {\rm M}_{\odot }$; cluster emission is detected above the background to a radius of $\sim \!2.2\, r_{500}$, or approximately the virial radius. The intracluster gas is characterized by an emission-weighted average temperature of 7.2 ± 0.3 keV and metallicity with respect to Solar of $Z/\, Z_{\odot }=0.37\pm 0.08$. For the first time at such high redshift, this deep data set provides a measurement of metallicity outside the cluster centre; at radii $r\gt 0.3\, r_{500}$, we find $Z/\, Z_{\odot }=0.33\pm 0.17$ in good agreement with precise measurements at similar radii in the most nearby clusters, supporting an early enrichment scenario in which the bulk of the cluster gas is enriched to a universal metallicity prior to cluster formation, with little to no evolution thereafter. The leverage provided by the high redshift of this cluster tightens by a factor of 2 constraints on evolving metallicity models, when combined with previous measurements at lower redshifts.


2020 ◽  
Vol 494 (3) ◽  
pp. 4090-4097 ◽  
Author(s):  
D J M Cunningham ◽  
S C Chapman ◽  
M Aravena ◽  
C De Breuck ◽  
M Béthermin ◽  
...  

ABSTRACT We present Atacama Compact Array and Atacama Pathfinder Experiment observations of the [N ii] 205 μm fine-structure line in 40 sub-millimetre galaxies lying at redshifts z = 3–6, drawn from the 2500 deg2 South Pole Telescope survey. This represents the largest uniformly selected sample of high-redshift [N ii] 205 μm measurements to date. 29 sources also have [C ii] 158 μm line observations allowing a characterization of the distribution of the [C ii] to [N ii] luminosity ratio for the first time at high redshift. The sample exhibits a median L$_{{\rm{[C\,{\small II}]}}}$/L$_{{\rm{[N\,{\small II}]}}}$ ≈ 11.0 and interquartile range of 5.0 –24.7. These ratios are similar to those observed in local (Ultra)luminous infrared galaxies (LIRGs), possibly indicating similarities in their interstellar medium. At the extremes, we find individual sub-millimetre galaxies with L$_{{\rm{[C\,{\small II}]}}}$/L$_{{\rm{[N\,{\small II}]}}}$ low enough to suggest a smaller contribution from neutral gas than ionized gas to the [C ii] flux and high enough to suggest strongly photon or X-ray region dominated flux. These results highlight a large range in this line luminosity ratio for sub-millimetre galaxies, which may be caused by variations in gas density, the relative abundances of carbon and nitrogen, ionization parameter, metallicity, and a variation in the fractional abundance of ionized and neutral interstellar medium.


Author(s):  
Amanda G. Wilber ◽  
Melanie Johnston-Hollitt ◽  
Stefan W. Duchesne ◽  
Cyril Tasse ◽  
Hiroki Akamatsu ◽  
...  

Abstract Early science observations from the Australian Square Kilometre Array Pathfinder (ASKAP) have revealed clear signals of diffuse radio emission associated with two clusters detected by the South Pole Telescope via their Sunyaev Zel’dovich signal: SPT CLJ0553-3342 (MACS J0553.4-3342) and SPT CLJ0638-5358 (Abell S0592) are both high-mass lensing clusters that have undergone major mergers. To create science-fidelity images of the galaxy clusters, we performed direction-dependent (DD) calibration and imaging on these ASKAP early science observations using state-of-the-art software killMS and DDFacet. Here, we present our DD calibrated ASKAP radio images of both clusters showing unambiguous giant radio halos with largest linear scales of ${\sim}1$ Mpc. The halo in MACS J0553.4-3342 was previously detected with Giant Metrewave Radio Telescope observations at 323 MHz but appears more extended in our ASKAP image. Although there is a shock detected in the thermal X-ray emission of this cluster, we find that the particle number density in the shocked region is too low to allow for the generation of a radio shock. The radio halo in Abell S0592 is a new discovery, and the Southwest border of the halo coincides with a shock detected in X-rays. We discuss the origins of these halos considering both the hadronic and turbulent re-acceleration models and sources of seed electrons. This work gives a positive indication of the potential of ASKAP’s Evolutionary Map of the Universe survey in detecting intracluster medium radio sources.


2019 ◽  
Vol 627 ◽  
pp. A31 ◽  
Author(s):  
J. González-Nuevo ◽  
S. L. Suárez Gómez ◽  
L. Bonavera ◽  
F. Sánchez-Lasheras ◽  
F. Argüeso ◽  
...  

Context. The statistical analysis of large sample of strong lensing events can be a powerful tool to extract astrophysical or cosmological valuable information. Their selection using submillimetre galaxies has been demonstrated to be very effective with more than ∼200 proposed candidates in the case ofHerschel-ATLAS data and several tens in the case of the South Pole Telescope. However, the number of confirmed events is still relatively low, i.e. a few tens, mostly because of the lengthy observational validation process on individual events.Aims. In this work we propose a new methodology with a statistical selection approach to increase by a factor of ∼5 the number of such events within theHerschel-ATLAS data set. Although the methodology can be applied to address several selection problems, it has particular benefits in the case of the identification of strongly lensed galaxies: objectivity, minimal initial constrains in the main parameter space, and preservation of statistical properties.Methods. The proposed methodology is based on the Bhattacharyya distance as a measure of the similarity between probability distributions of properties of two different cross-matched galaxies. The particular implementation for the aim of this work is called SHALOS and it combines the information of four different properties of the pair of galaxies: angular separation, luminosity percentile, redshift, and the ratio of the optical to the submillimetre flux densities.Results. The SHALOS method provides a ranked list of strongly lensed galaxies. The number of candidates within ∼340 deg2of theHerschel-ATLAS surveyed area for the final associated probability,Ptot >  0.7, is 447 and they have an estimated mean amplification factor of 3.12 for a halo with a typical cluster mass. Additional statistical properties of the SHALOS candidates, as the correlation function or the source number counts, are in agreement with previous results indicating the statistical lensing nature of the selected sample.


2019 ◽  
Vol 487 (2) ◽  
pp. 2900-2918 ◽  
Author(s):  
T Shin ◽  
S Adhikari ◽  
E J Baxter ◽  
C Chang ◽  
B Jain ◽  
...  

ABSTRACT We present a detection of the splashback feature around galaxy clusters selected using the Sunyaev–Zel’dovich (SZ) signal. Recent measurements of the splashback feature around optically selected galaxy clusters have found that the splashback radius, rsp, is smaller than predicted by N-body simulations. A possible explanation for this discrepancy is that rsp inferred from the observed radial distribution of galaxies is affected by selection effects related to the optical cluster-finding algorithms. We test this possibility by measuring the splashback feature in clusters selected via the SZ effect in data from the South Pole Telescope SZ survey and the Atacama Cosmology Telescope Polarimeter survey. The measurement is accomplished by correlating these cluster samples with galaxies detected in the Dark Energy Survey Year 3 data. The SZ observable used to select clusters in this analysis is expected to have a tighter correlation with halo mass and to be more immune to projection effects and aperture-induced biases, potentially ameliorating causes of systematic error for optically selected clusters. We find that the measured rsp for SZ-selected clusters is consistent with the expectations from simulations, although the small number of SZ-selected clusters makes a precise comparison difficult. In agreement with previous work, when using optically selected redMaPPer clusters with similar mass and redshift distributions, rsp is ∼2σ smaller than in the simulations. These results motivate detailed investigations of selection biases in optically selected cluster catalogues and exploration of the splashback feature around larger samples of SZ-selected clusters. Additionally, we investigate trends in the galaxy profile and splashback feature as a function of galaxy colour, finding that blue galaxies have profiles close to a power law with no discernible splashback feature, which is consistent with them being on their first infall into the cluster.


Sign in / Sign up

Export Citation Format

Share Document