scholarly journals Disentangling the dark matter halo from the stellar halo

2011 ◽  
Vol 418 (1) ◽  
pp. 336-345 ◽  
Author(s):  
Noam I. Libeskind ◽  
Alexander Knebe ◽  
Yehuda Hoffman ◽  
Stefan Gottlöber ◽  
Gustavo Yepes
2019 ◽  
Vol 485 (3) ◽  
pp. 3296-3316 ◽  
Author(s):  
Christopher Wegg ◽  
Ortwin Gerhard ◽  
Marie Bieth

Abstract From a sample of 15651 RR Lyrae with accurate proper motions in Gaia DR2, we measure the azimuthally averaged kinematics of the inner stellar halo between 1.5  and 20  kpc from the Galactic centre. We find that their kinematics are strongly radially anisotropic, and their velocity ellipsoid nearly spherically aligned over this volume. Only in the inner regions ${\lesssim } 5\, {\rm kpc}\,$ does the anisotropy significantly fall (but still with β > 0.25) and the velocity ellipsoid tilt towards cylindrical alignment. In the inner regions, our sample of halo stars rotates at up to $50\, {\rm km}\, {\rm s}^{-1}\,$, which may reflect the early history of the Milky Way, although there is also a significant angular momentum exchange with the Galactic bar at these radii. We subsequently apply the Jeans equations to these kinematic measurements in order to non-parametrically infer the azimuthally averaged gravitational acceleration field over this volume, and by removing the contribution from baryonic matter, measure the contribution from dark matter. We find that the gravitational potential of the dark matter is nearly spherical with average flattening $q_\Phi ={1.01 \pm 0.06\, }$ between 5 and 20 kpc, and by fitting parametric ellipsoidal density profiles to the acceleration field, we measure the flattening of the dark matter halo over these radii to be $q_\rho ={1.00 \pm 0.09\, }\!.$


2015 ◽  
Vol 11 (S317) ◽  
pp. 1-8
Author(s):  
Kathryn V. Johnston

AbstractThis contribution reviews ideas about the origins of stellar halos. It includes discussion of the theoretical understanding of and observational evidence for stellar populations formed “in situ” (meaning formed in orbits close to their current ones), “kicked-out” (meaning formed in the inner galaxy in orbits unlike their current ones) and “accreted” (meaning formed in a dark matter halo other than the one they currently occupy). At this point there is general agreement that a significant fraction of any stellar halo population is likely “accreted”. There is modest evidence for the presence of a “kicked-out” population around both the Milky Way and M31. Our theoretical understanding of and the observational evidence for an “in situ” population are less clear.


2019 ◽  
Vol 14 (S353) ◽  
pp. 123-127 ◽  
Author(s):  
Gurtina Besla ◽  
Nicolás Garavito-Camargo

AbstractRecent advancements in astrometry and in cosmological models of dark matter halo growth have significantly changed our understanding of the dynamics of the Local Group. The most dramatic changes owe to a new picture of the structure and dynamics of the Milky Way’s most massive satellite galaxy, the Large Magellanic Cloud (LMC), which is most likely on its first passage about the Milky Way and ten times larger in mass than previously assumed. The LMC’s orbit through the Milky Way’s dark matter and stellar halo will leave characteristic signatures in both density and kinematics. Furthermore, the gravitational perturbations produced by both direct tidal forcing from the LMC and the response of the halo to its passage will together cause significant perturbations to the orbits of tracers of the Milky Way’s dark matter distribution. We advocate for the use of basis field expansion methods to fully capture and quantify these effects.


2019 ◽  
Vol 488 (2) ◽  
pp. 2673-2688
Author(s):  
Hoyoung D Kang ◽  
Massimo Ricotti

ABSTRACT Stellar haloes observed around normal galaxies are extended and faint stellar structures formed by debris of tidally disrupted dwarf galaxies accreted overtime by the host galaxy. Around dwarf galaxies, these stellar haloes may not exist if all the accreted satellites are dark haloes without stars. However, if a stellar halo is found in sufficiently small mass dwarfs, the whole stellar halo is composed of tidal debris of fossil galaxies, and we refer to it as ghostly halo. Fossil galaxies are so called because they formed most of their stars before the epoch of reionization, and have been identified as the ultrafaint dwarf galaxies found around the Milky Way and M31. In this paper, we carry out semi-analytical simulations to characterize the sizes and stellar masses of ghostly stellar haloes in dwarf galaxies as a function of their dark matter halo mass. By comparing the models to observations of six isolated dwarf galaxies in the Local Group showing evidence of extended stellar haloes, we are able to constrain the star formation efficiency in fossil galaxies. We find that at redshift z ∼ 6, dark matter haloes in the mass range 107–109 M⊙ have a mean star formation efficiency $f_* \equiv M_*/M_{\mathrm{ dm}} \sim 0.1\!-\!0.2\hbox{ per cent}$ nearly constant as a function of the dark matter halo mass.


2009 ◽  
Vol 5 (H15) ◽  
pp. 69-69 ◽  
Author(s):  
Anne-Marie Weijmans

We developed a new method to obtain absorption line spectra of early-type galaxies at large radii, using integral-field spectrography (IFS). By using the spectrograph as a 'photon-collector' and adding the signal of many individual spaxels together in one spectrum, we obtain sufficient signal-to-noise to measure both stellar kinematics and line strengths at large radii. These can be used to determine the properties of the dark matter halo, as well as the stellar halo population.


2020 ◽  
Vol 500 (1) ◽  
pp. 1054-1070
Author(s):  
Luca Ciotti ◽  
Antonio Mancino ◽  
Silvia Pellegrini ◽  
Azadeh Ziaee Lorzad

ABSTRACT Recently, two-component spherical galaxy models have been presented, where the stellar profile is described by a Jaffe law, and the total density by another Jaffe law, or by an r−3 law at large radii. We extend these two families to their ellipsoidal axisymmetric counterparts: the JJe and J3e models. The total and stellar density distributions can have different flattenings and scale lengths, and the dark matter halo is defined by difference. First, the analytical conditions required to have a nowhere negative dark matter halo density are derived. The Jeans equations for the stellar component are then solved analytically, in the limit of small flattenings, also in the presence of a central BH. The azimuthal velocity dispersion anisotropy is described by the Satoh k-decomposition. Finally, we present the analytical formulae for velocity fields near the centre and at large radii, together with the various terms entering the virial theorem. The JJe and J3e models can be useful in a number of theoretical applications, e.g. to explore the role of the various parameters (flattening, relative scale lengths, mass ratios, rotational support) in determining the behaviour of the stellar kinematical fields before performing more time-expensive integrations with specific galaxy models, to test codes of stellar dynamics and in numerical simulations of gas flows in galaxies.


2020 ◽  
Vol 500 (1) ◽  
pp. 310-318
Author(s):  
Roberto De Propris ◽  
Michael J West ◽  
Felipe Andrade-Santos ◽  
Cinthia Ragone-Figueroa ◽  
Elena Rasia ◽  
...  

ABSTRACT We explore the persistence of the alignment of brightest cluster galaxies (BCGs) with their local environment. We find that a significant fraction of BCGs do not coincide with the centroid of the X-ray gas distribution and/or show peculiar velocities (they are not at rest with respect to the cluster mean). Despite this, we find that BCGs are generally aligned with the cluster mass distribution even when they have significant offsets from the X-ray centre and significant peculiar velocities. The large offsets are not consistent with simple theoretical models. To account for these observations BCGs must undergo mergers preferentially along their major axis, the main infall direction. Such BCGs may be oscillating within the cluster potential after having been displaced by mergers or collisions, or the dark matter halo itself may not yet be relaxed.


2012 ◽  
Vol 758 (1) ◽  
pp. L23 ◽  
Author(s):  
Sarah R. Loebman ◽  
Željko Ivezić ◽  
Thomas R. Quinn ◽  
Fabio Governato ◽  
Alyson M. Brooks ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Marc S. Seigar

We investigate the dark matter halo density profile of M33. We find that the HI rotation curve of M33 is best described by an NFW dark matter halo density profile model, with a halo concentration of and a virial mass of . We go on to use the NFW concentration of M33, along with the values derived for other galaxies (as found in the literature), to show that correlates with both spiral arm pitch angle and supermassive black hole mass.


Sign in / Sign up

Export Citation Format

Share Document