Fibre-free diet leads to impairment of neuronally mediated muscle contractile response in rat distal colon

2006 ◽  
Vol 18 (12) ◽  
pp. 1093-1101 ◽  
Author(s):  
r. mitsui ◽  
s.-i. karaki ◽  
y. kubo ◽  
y. sugiura ◽  
a. kuwahara
2001 ◽  
Vol 120 (5) ◽  
pp. A177-A177
Author(s):  
S SHARP ◽  
J YU ◽  
J GUZMAN ◽  
J XUE ◽  
H COOKE ◽  
...  

1974 ◽  
Vol 52 (4) ◽  
pp. 887-890 ◽  
Author(s):  
L. L. Odette ◽  
H. L. Atwood

The effect of dantrolene sodium, a muscle relaxant effective on vertebrate skeletal muscle, has been studied on the stretcher muscle of a crab (Callinectes sapidus). The drug rapidly and reversibly attenuates the muscle contractile response to direct and indirect stimulation. Neuromuscular transmission is unaffected, as are the electrical properties of the muscle membrane. It is concluded that dantrolene sodium uncouples excitation–contraction mechanisms in crustacean tonic muscle.


1997 ◽  
Vol 17 (4) ◽  
pp. 693-702 ◽  
Author(s):  
Kumiko Yamazaki ◽  
Takaji Yajima ◽  
Tamotsu Kuwata

2008 ◽  
Vol 581 (1-2) ◽  
pp. 164-170 ◽  
Author(s):  
Libor Mrnka ◽  
Miroslav Hock ◽  
Markéta Rybová ◽  
Jiří Pácha

1988 ◽  
Vol 254 (3) ◽  
pp. C383-C390 ◽  
Author(s):  
G. M. Feldman ◽  
S. F. Berman ◽  
R. L. Stephenson

To study HCO3- secretion in rat distal colon, we utilized a technique that permits control of electrical and chemical transepithelial gradients. With symmetrical solutions (pH 7.4, [HCO3-] 25 mM, and CO2 tension 40 mmHg) bathing both tissue surfaces and under short-circuit conditions, HCO3- secretion remained stable for greater than 4 h at 1 mueq. h-1.cm-2. As the mucosal solution was alkalinized, the serosal solution was acidified at 3.1 mueq.h-1.cm-2. Ninety-four percent of serosal acidification was accounted for by the rate of metabolic lactic acid generation and transepithelial HCO3- secretion. Clamping transepithelial voltage reversibly affected net HCO3- secretion, and a linear relationship existed between clamped mucosal voltage and net HCO3- flux (r = 0.99); mucosal voltage of -68 mV completely inhibited net secretion. The apparent permeability coefficient of the colon to HCO3- is 2.8 X 10(-6) cm/s. One millimolar ouabain completely inhibited net HCO3- secretion. Acetazolamide (10(-4) M) inhibited secretion by approximately 50%, whereas a 10(-3) M concentration inhibited secretion by 90%. These data demonstrate that net colonic HCO3- secretion can be measured without imposed electrical and chemical gradients and that this flux is voltage sensitive and depends on carbonic anhydrase and Na+-K+-ATPase activities.


Gut ◽  
1994 ◽  
Vol 35 (9) ◽  
pp. 1275-1281 ◽  
Author(s):  
P Kissmeyer-Nielsen ◽  
H Christensen ◽  
S Laurberg

2013 ◽  
Vol 32 (6) ◽  
pp. 1551-1565 ◽  
Author(s):  
Stefania Antico ◽  
Maria Giulia Lionetto ◽  
Maria Elena Giordano ◽  
Roberto Caricato ◽  
Trifone Schettino

1999 ◽  
Vol 276 (1) ◽  
pp. G132-G137 ◽  
Author(s):  
Vazhaikkurichi M. Rajendran ◽  
Henry J. Binder

Na depletion inhibits electroneutral Na-Cl absorption in intact tissues and Na/H exchange in apical membrane vesicles (AMV) of rat distal colon. Two anion (Cl/HCO3 and Cl/OH) exchanges have been identified in AMV from surface cells of rat distal colon. To determine whether Cl/HCO3 and/or Cl/OH exchange is responsible for vectorial Cl movement, this study examined the spatial distribution and the effect of Na depletion on anion-dependent 36Cl uptake by AMV in rat distal colon. These studies demonstrate that HCO3 concentration gradient-driven36Cl uptake (i.e., Cl/HCO3 exchange) is 1) primarily present in AMV from surface cells and 2) markedly reduced by Na depletion. In contrast, OH concentration gradient-driven36Cl uptake (i.e., Cl/OH exchange) present in both surface and crypt cells is not affected by Na depletion. In Na-depleted animals HCO3 also stimulates36Cl via Cl/OH exchange with low affinity. These results suggest that Cl/HCO3 exchange is responsible for vectorial Cl absorption, whereas Cl/OH exchange is involved in cell volume and/or cell pH homeostasis.


1983 ◽  
Vol 245 (5) ◽  
pp. G668-G675 ◽  
Author(s):  
E. S. Foster ◽  
T. W. Zimmerman ◽  
J. P. Hayslett ◽  
H. J. Binder

To determine the effect of corticosteroids on active transport processes, unidirectional fluxes of 22Na, 36Cl, and 42K were measured under short-circuit conditions across isolated stripped distal colonic mucosa of the rat in control, secondary hyperaldosterone, and dexamethasone-treated animals. In controls net sodium and chloride fluxes (JNanet and JClnet) and short-circuit current (Isc) were 6.6 +/- 2.2, 7.6 +/- 1.6, and 1.3 +/- 0.2 mu eq X h-1 X cm-2, respectively. Although aldosterone increased Isc to 7.3 +/- 0.5 mu eq X h-1 X cm-2, JNanet (6.9 +/- 0.7 mu eq X h-1 X cm-2) was not altered and JClnet was reduced to 0 compared with controls. Dexamethasone also stimulated Isc but did not inhibit JClnet. In Cl-free Ringer both aldosterone and dexamethasone produced significant and equal increases in JNanet and Isc. Theophylline abolished JNanet in control animals but not in the aldosterone group. Aldosterone reversed net potassium absorption (0.58 +/- 0.11 mu eq X h-1 X cm-2) to net potassium secretion (-0.94 +/- 0.08 mu eq X h-1 X cm-2). Dexamethasone reduced net potassium movement to 0 (-0.04 +/- 0.12 mu eq X h-1 X cm-2). These studies demonstrate that 1) corticosteroids stimulate electrogenic sodium absorption and 2) aldosterone, but not dexamethasone, inhibits neutral NaCl absorption and stimulates active potassium secretion. The effects of mineralocorticoids and glucocorticoids on electrolyte transport are not identical and may be mediated by separate and distinct mechanisms.


Sign in / Sign up

Export Citation Format

Share Document